結果

問題 No.2377 SUM AND XOR on Tree
ユーザー 👑 p-adic
提出日時 2024-01-23 15:11:12
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,086 ms / 4,000 ms
コード長 53,202 bytes
コンパイル時間 16,067 ms
コンパイル使用メモリ 323,272 KB
最終ジャッジ日時 2025-02-18 22:21:52
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef INCLUDE_MODE
#define INCLUDE_MODE
// #define REACTIVE
// #define USE_GETLINE
#endif
#ifdef INCLUDE_MAIN
IN VO Solve()
{
CIN( int , N ); uint M = N - 1;
gE<int>.resize( N );
FOR( j , 0 , M ){
CIN_ASSERT( uj , 1 , N ); CIN_ASSERT( vj , 1 , N );
uj--; vj--;
gE<int>[uj].push_back( vj ); gE<int>[vj].push_back( uj );
}
using T = vector<vector<ll>>;
gA<T>.resize( N );
FOR( i , 0 , N ){
CIN( ll , Ai );
T& A_i = gA<T>[i] = T( 30 , { 0 , 0 } );
FOR( d , 0 , 30 ){
A_i[d][ ( Ai >> d ) & 1 ] = 1;
}
}
CEXPR( ll , P , 998244353 );
auto f = [&]( const list<T>& a = {} , const int& i = 0 )
{
T& temp = gA<T>[i];
FOR_ITR( a ){
if( temp.empty() ){
temp = *itr;
} else if( ! itr->empty() ){
T answer = T( 30 , { 0 , 0 } );
FOR( d , 0 , 30 ){
FOR( is , 0 , 2 ){
( answer[d][is] += temp[d][is] * ( *itr )[d][1] ) %= P;
( answer[d][is ^ 0] += temp[d][is] * ( *itr )[d][0] ) %= P;
( answer[d][is ^ 1] += temp[d][is] * ( *itr )[d][1] ) %= P;
}
}
temp = move( answer );
}
}
return temp;
};
Graph tree{ N , Get( gE<int> ) };
DepthFirstSearchOnTree dfst{ tree , 0 };
T val = dfst.RootingDP( f );
ll answer = 0;
ll power = 1;
FOR( d , 0 , 30 ){
( answer += val[d][1] * power ) %= P;
( power <<= 1 ) < P ? power : power -= P;
}
RETURN( answer );
}
REPEAT_MAIN(1);
#else // INCLUDE_MAIN
#ifdef INCLUDE_SUB
//
TE <TY T> Map<T,T> gF;
TE <TY T> VE<T> gA;
TE <TY PATH> VE<LI<PATH>> gE;
TE <TY T , TE <TY...> TY V> IN auto Get( CO V<T>& a ) { return [&]( CRI i = 0 ){ RE a[i]; }; }
// COMPARE使
ll Naive( int N , int M , int K )
{
ll answer = N + M + K;
return answer;
}
// COMPARE使
ll Answer( ll N , ll M , ll K )
{
// START_WATCH;
ll answer = N + M + K;
// // TL100.0[ms]
// CEXPR( double , TL , 2000.0 );
// while( CHECK_WATCH( TL ) ){
// }
return answer;
}
//
IN VO Experiment()
{
// CEXPR( int , bound , 10 );
// FOREQ( N , 0 , bound ){
// FOREQ( M , 0 , bound ){
// FOREQ( K , 0 , bound ){
// COUT( N , M , K , ":" , Naive( N , M , K ) );
// }
// }
// // cout << Naive( N ) << ",\n"[N==bound];
// }
}
//
IN VO SmallTest()
{
// CEXPR( int , bound , 10 );
// FOREQ( N , 0 , bound ){
// FOREQ( M , 0 , bound ){
// FOREQ( K , 0 , bound ){
// COMPARE( N , M , K );
// }
// }
// // COMPARE( N );
// }
}
#define INCLUDE_MAIN
#include __FILE__
#else // INCLUDE_SUB
#ifdef INCLUDE_LIBRARY
/*
C-x 3 C-x o C-x C-f
BFS:
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt
CoordinateCompress:
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txt
DFSOnTree
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/a.hpp
Divisor:
c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt
IntervalAddBIT
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/compress.txt
Polynomial
c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt
UnionFind
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/UnionFindForest/compress.txt
*/
// VVV
// O(1)/O(|V_G|)/
// Next()init O(init)
// Next()Shift() O(|V_G|+|E_G|)
// init O(init)
// O(|V_G|+|E_G|)
template <typename GRAPH>
class VirtualBreadthFirstSearch :
public PointedSet<int>
{
protected:
GRAPH& m_G;
bool m_initialised;
//
list<int> m_next;
//
vector<bool> m_found;
// 辿
vector<int> m_prev;
public:
inline VirtualBreadthFirstSearch( GRAPH& G );
inline VirtualBreadthFirstSearch( GRAPH& G , const int& init );
// m_nextm_foundm_prev
inline void Initialise();
// m_nextm_foundm_previnit
inline void Initialise( const int& init );
// m_nextm_foundm_previnit
inline void Shift( const int& init );
inline const int& size() const noexcept;
inline vector<bool>::reference found( const int& i );
inline const int& prev( const int& i );
inline int Next();
// init
// -1
void SetDepth( vector<int>& depth );
//
//
void SetConnectedComponent( vector<int>& cc_num , int& count );
private:
virtual void Push( list<int>& next , const int& i ) = 0;
};
template <typename GRAPH>
class BreadthFirstSearch :
public VirtualBreadthFirstSearch<GRAPH>
{
public:
template <typename...Args> inline BreadthFirstSearch( GRAPH& G , const Args&... args );
private:
inline void Push( list<int>& next , const int& i );
};
template <typename GRAPH> inline VirtualBreadthFirstSearch<GRAPH>::VirtualBreadthFirstSearch( GRAPH& G ) : m_G( G ) , m_initialised( false ) ,
    m_next() , m_found() , m_prev() { static_assert( is_same_v<inner_t<GRAPH>,int> ); }
template <typename GRAPH> inline VirtualBreadthFirstSearch<GRAPH>::VirtualBreadthFirstSearch( GRAPH& G , const int& init ) :
    VirtualBreadthFirstSearch<GRAPH>( G ) { Initialise( init ); }
template <typename GRAPH> template <typename...Args> inline BreadthFirstSearch<GRAPH>::BreadthFirstSearch( GRAPH& G , const Args&... args ) :
    VirtualBreadthFirstSearch<GRAPH>( G , args... ) {}
template <typename GRAPH> inline void VirtualBreadthFirstSearch<GRAPH>::Initialise() { m_initialised = true; const int& V = size(); m_next.clear();
    m_found = vector<bool>( V ); m_prev = vector<int>( V , -1 ); }
template <typename GRAPH> inline void VirtualBreadthFirstSearch<GRAPH>::Initialise( const int& init ) { assert( ( this->init() = init ) < size() );
    Initialise(); m_next.push_back( init ); m_found[init] = true; }
template <typename GRAPH> inline void VirtualBreadthFirstSearch<GRAPH>::Shift( const int& init ) { if( m_initialised ){ const int& V = size();
    assert( ( this->init() = init ) < V ); m_next.clear(); if( ! m_found[init] ){ m_next.push_back( init ); m_found[init] = true; } } else {
    Initialise( init ); } }
template <typename GRAPH> inline const int& VirtualBreadthFirstSearch<GRAPH>::size() const noexcept { return m_G.size(); }
template <typename GRAPH> inline vector<bool>::reference VirtualBreadthFirstSearch<GRAPH>::found( const int& i ) { assert( i < size() ); if(
    !m_initialised ){ Initialise(); } return m_found[i]; }
template <typename GRAPH> inline const int& VirtualBreadthFirstSearch<GRAPH>::prev( const int& i ) { assert( i < size() ); if( !m_initialised ){
    Initialise(); } return m_prev[i]; }
template <typename GRAPH> inline int VirtualBreadthFirstSearch<GRAPH>::Next()
{
if( m_next.empty() ){
return -1;
}
const int i_curr = m_next.front();
m_next.pop_front();
auto&& edge = m_G.Edge( i_curr );
while( ! edge.empty() ){
const int& i = edge.front();
auto&& found_i = m_found[i];
if( ! found_i ){
Push( m_next , i );
m_prev[i] = i_curr;
found_i = true;
}
edge.pop_front();
}
return i_curr;
}
template <typename GRAPH>
void VirtualBreadthFirstSearch<GRAPH>::SetDepth( vector<int>& depth )
{
depth = vector<int>( size() , -1 );
int i = Next();
depth[i] = 0;
while( ( i = Next() ) != -1 ){
depth[i] = depth[prev( i )] + 1;
}
return;
}
template <typename GRAPH>
void VirtualBreadthFirstSearch<GRAPH>::SetConnectedComponent( vector<int>& cc_num , int& count )
{
const int& V = size();
cc_num = vector<int>( V , -1 );
count = 0;
for( int i = 0 ; i < V ; i++ ){
if( cc_num[i] == -1 ){
Shift( i );
int j = Next();
if( j != -1 ){
while( j != -1 ){
// true
assert( cc_num[j] == -1 );
cc_num[j] = count;
j = Next();
}
count++;
}
}
}
return;
}
template <typename GRAPH> inline void BreadthFirstSearch<GRAPH>::Push( list<int>& next , const int& i ) { next.push_back( i ); }
template <typename GRAPH>
class DepthFirstSearch :
public VirtualBreadthFirstSearch<GRAPH>
{
public:
template <typename...Args> inline DepthFirstSearch( GRAPH& G , const Args&... args );
private:
inline void Push( list<int>& next , const int& i );
};
template <typename GRAPH> template <typename...Args> inline DepthFirstSearch<GRAPH>::DepthFirstSearch( GRAPH& G , const Args&... args ) :
    VirtualBreadthFirstSearch<GRAPH>( G , args... ) {}
template <typename GRAPH> inline void DepthFirstSearch<GRAPH>::Push( list<int>& next , const int& i ) { next.push_front( i ); }
// digitAncestorLCA使0
// 2^16 = 65536
// 2^17 = 131072
// 2^18 = 262144
// G
template <typename TREE>
class DepthFirstSearchOnTree :
public DepthFirstSearch<TREE>
{
private:
vector<int> m_reversed;
vector<vector<int>> m_children;
vector<int> m_children_num;
bool m_set_children;
vector<int> m_depth;
bool m_set_depth;
vector<int> m_height;
bool m_set_height;
vector<int> m_weight;
bool m_set_weight;
int m_digit;
vector<vector<int>> m_doubling;
bool m_set_doubling;
public:
inline DepthFirstSearchOnTree( TREE& T , const int& root = 0 , const int& digit = 0 );
inline void Initialise( ) = delete;
inline void Initialise( const int& init ) = delete;
inline void Shift( const int& init ) = delete;
inline const int& Root() const;
inline const int& Parent( const int& i );
inline const vector<int>& Children( const int& i );
inline const int& Depth( const int& i );
inline const int& Height( const int& i );
inline const int& Weight( const int& i );
//
inline const int& NodeNumber( const int& i , const bool& reversed = false ) const;
//
inline const int& ChildrenNumber( const int& i );
// < 2^digit
// nParent^n( i )
int Ancestor( int i , int n );
int LCA( int i , int j );
// LCAi,ji_prev,j_prev
int LCA( int i , int j , int& i_prev , int& j_prev );
// U
// Ff:U^{< \omega} \times N -> U
// f
//
// (2) n,iTn(u1,...,un)
// (v1,...,vn)f((u1,...,un),i)=f((v1,...,vn),i)
//
// dp[j] = f(jkdp[k],j)
// dpdp[m_init]O(m_V)
template <typename F> ret_t<F> RootingDP( F& f );
// U
// Ff:U^2->U
// Eg:U \times \{0,1\} \times N^2 -> U
//
// (1) MU*
// (2) n,iTn(u1,...,un)
// (v1,...,vn)
// f(u1*u2*...*un,j)=f(v1*v2*...*vn,j)
//
// dp[i][j] =
// f(ijkg(dp[i][k],ji,k,j)M,j)
// dpdp[i][i]O(|V_T|)d
template <typename MONOID , typename F , typename G> void RerootingDP( MONOID& M , F& f , G& g , vector<inner_t<MONOID>>& d );
// fjgb?(j,k):(k,j)
// m_Tf+1gid
private:
void SetChildren();
void SetDepth();
void SetHeight();
void SetWeight();
// < 2^digit
// LCA()Ancestor()
//
// ../../../../Mathematics/Function/Iteration/Doubling/
//
void SetDoubling();
};
template <typename TREE> inline DepthFirstSearchOnTree<TREE>::DepthFirstSearchOnTree( TREE& T , const int& root , const int& digit ) :
DepthFirstSearch<TREE>( T , root ) , m_reversed( this->size() ) , m_children() , m_set_children() , m_depth() , m_set_depth() , m_height() ,
      m_set_height() , m_weight() , m_set_weight() , m_digit( digit ) , m_doubling( m_digit ) , m_set_doubling()
{
int n = this->size();
while( --n >= 0 ){
m_reversed[n] = this->Next();
}
}
template <typename TREE> inline const int& DepthFirstSearchOnTree<TREE>::Root() const { return this->init(); }
template <typename TREE> inline const int& DepthFirstSearchOnTree<TREE>::Parent( const int& i ) { return this->prev( i ); }
template <typename TREE> inline const vector<int>& DepthFirstSearchOnTree<TREE>::Children( const int& i ) { if( ! m_set_children ){ SetChildren(); }
    return m_children[i]; }
template <typename TREE> inline const int& DepthFirstSearchOnTree<TREE>::Depth( const int& i ) { if( ! m_set_depth ){ SetDepth(); } return
    m_depth[i]; }
template <typename TREE> inline const int& DepthFirstSearchOnTree<TREE>::Height( const int& i ) { if( ! m_set_height ){ SetHeight(); } return
    m_height[i]; }
template <typename TREE> inline const int& DepthFirstSearchOnTree<TREE>::Weight( const int& i ) { if( ! m_set_weight ){ SetWeight(); } return
    m_weight[i]; }
template <typename TREE> inline const int& DepthFirstSearchOnTree<TREE>::NodeNumber( const int& i , const bool& reversed ) const { return
    m_reversed[reversed ? i : this->size() - 1 - i]; }
template <typename TREE> inline const int& DepthFirstSearchOnTree<TREE>::ChildrenNumber( const int& i ) { if( ! m_set_children ){ SetChildren(); }
    return m_children_num[i]; }
template <typename TREE>
int DepthFirstSearchOnTree<TREE>::Ancestor( int i , int n )
{
if( ! m_set_doubling ){
SetDoubling();
}
assert( ( n >> m_digit ) == 0 );
int d = 0;
while( n != 0 ){
if( ( n & 1 ) == 1 ){
assert( ( i = m_doubling[d][i] ) != -1 );
}
d++;
n >>= 1;
}
return i;
}
template <typename TREE>
int DepthFirstSearchOnTree<TREE>::LCA( int i , int j )
{
int diff = Depth( i ) - Depth( j );
if( diff < 0 ){
swap( i , j );
diff *= -1;
}
i = Ancestor( i , diff );
if( i == j ){
return i;
}
int d = m_digit;
while( --d >= 0 ){
const vector<int>& doubling_d = m_doubling[d];
const int& doubling_d_i = doubling_d[i];
const int& doubling_d_j = doubling_d[j];
if( doubling_d_i != doubling_d_j ){
i = doubling_d_i;
j = doubling_d_j;
assert( i != -1 );
assert( j != -1 );
}
}
return Parent( i );
}
template <typename TREE>
int DepthFirstSearchOnTree<TREE>::LCA( int i , int j , int& i_prev , int& j_prev )
{
if( i == j ){
i_prev = j_prev = -1;
return i;
}
int diff = Depth( i ) - Depth( j );
if( diff < 0 ){
return LCA( j , i , j_prev , i_prev );
}
if( diff > 0 ){
i_prev = Ancestor( i , diff - 1 );
i = Parent( i_prev );
assert( i != -1 );
if( i == j ){
j_prev = -1;
return i;
}
} else if( ! m_set_doubling ){
SetDoubling();
}
int d = m_digit;
while( --d >= 0 ){
const vector<int>& doubling_d = m_doubling[d];
const int& doubling_d_i = doubling_d[i];
const int& doubling_d_j = doubling_d[j];
if( doubling_d_i != doubling_d_j ){
i = doubling_d_i;
j = doubling_d_j;
assert( i != -1 );
assert( j != -1 );
}
}
i_prev = i;
j_prev = j;
return Parent( i_prev );
}
template <typename TREE>
void DepthFirstSearchOnTree<TREE>::SetChildren()
{
assert( !m_set_children );
m_set_children = true;
const int& V = this->size();
m_children.resize( V );
m_children_num.resize( V );
for( int i = 0 ; i < V ; i++ ){
const int& j = Parent( i );
if( j == -1 ){
m_children_num[i] = -1;
} else {
vector<int>& m_children_j = m_children[j];
m_children_num[i] = m_children_j.size();
m_children_j.push_back( i );
}
}
return;
}
template <typename TREE>
void DepthFirstSearchOnTree<TREE>::SetDepth()
{
assert( !m_set_depth );
m_set_depth = true;
const int& V = this->size();
m_depth.resize( V );
for( int i = 0 ; i < V ; i++ ){
const int& reversed_i = m_reversed[i];
const int& parent_i = Parent( reversed_i );
if( parent_i != -1 ){
m_depth[i] += m_depth[parent_i] + 1;
}
}
return;
}
template <typename TREE>
void DepthFirstSearchOnTree<TREE>::SetHeight()
{
assert( !m_set_height );
m_set_height = true;
const int& V = this->size();
m_height.resize( V );
for( int i = 0 ; i < V ; i++ ){
const int& reversed_i = m_reversed[i];
const int& parent_i = Parent( reversed_i );
if( parent_i != -1 ){
int& height_parent_i = m_height[parent_i];
const int& height_i = m_height[reversed_i];
height_parent_i > height_i ? height_parent_i : height_parent_i = height_i + 1;
}
}
return;
}
template <typename TREE>
void DepthFirstSearchOnTree<TREE>::SetWeight()
{
assert( !m_set_weight );
m_set_weight = true;
const int& V = this->size();
m_weight.resize( V );
for( int i = 0 ; i < V ; i++ ){
const int& reversed_i = m_reversed[i];
const int& parent_i = Parent( reversed_i );
if( parent_i != -1 ){
m_weight[parent_i] += m_weight[reversed_i] + 1;
}
}
return;
}
template <typename TREE>
void DepthFirstSearchOnTree<TREE>::SetDoubling()
{
assert( !m_set_doubling );
m_set_doubling = true;
const int& V = this->size();
{
vector<int>& doubling_0 = m_doubling[0];
doubling_0.reserve( V );
const int& r = Root();
for( int i = 0 ; i < V ; i++ ){
doubling_0.push_back( Parent( i ) );
}
}
for( int d = 1 ; d < m_digit ; d++ ){
vector<int>& doubling_d = m_doubling[d];
vector<int>& doubling_d_minus = m_doubling[d-1];
doubling_d.reserve( V );
for( int i = 0 ; i < V ; i++ ){
const int& doubling_d_minus_i = doubling_d_minus[i];
doubling_d.push_back( doubling_d_minus_i == -1 ? -1 : doubling_d_minus[doubling_d_minus_i] );
}
}
return;
}
template <typename TREE> template <typename F>
ret_t<F> DepthFirstSearchOnTree<TREE>::RootingDP( F& f )
{
using U = ret_t<F>;
static_assert( is_invocable_r_v<U,F,list<U>,int> );
if( ! m_set_children ){
SetChildren();
}
const int& V = this->size();
vector<list<U>> children_value( V );
U temp;
for( int n = 0 ; n < V ; n++ ){
const int& i = NodeNumber( n , true );
const int& j = Parent( i );
temp = f( children_value[i] , i );
if( j != -1 ){
children_value[j].push_back( temp );
}
}
return temp;
}
template <typename TREE> template <typename MONOID , typename F , typename G>
void DepthFirstSearchOnTree<TREE>::RerootingDP( MONOID& M , F& f , G& g , vector<inner_t<MONOID>>& d )
{
using U = inner_t<MONOID>;
static_assert( is_invocable_r_v<U,F,U,U> && is_invocable_r_v<U,F,U,bool,int,int> );
if( ! m_set_children ){
SetChildren();
}
const int& V = this->size();
const U& e = M.Unit();
d.resize( V );
// children_value[i][m]imjf
vector<vector<U>> children_value( V );
// left_sum[i][m]children_value[i][0],...,children_value[i][m-1]
// gM
vector<vector<U>> left_sum( V );
// right_sum[i][m]children_value[i][m+1],...,children_value[i][size_i-1]
// gM
vector<vector<U>> right_sum( V );
for( int i = 0 ; i < V ; i++ ){
children_value[i].resize( m_children[i].size() );
}
for( int n = 0 ; n < V ; n++ ){
const int& i = NodeNumber( n , true );
const vector<U>& children_value_i = children_value[i];
const int size_i = children_value_i.size();
U temp = e;
vector<U>& left_sum_i = left_sum[i];
left_sum_i.reserve( size_i + 1 );
left_sum_i.push_back( temp );
for( int m = 0 ; m < size_i ; m++ ){
left_sum_i.push_back( temp = M.Product( temp , g( children_value_i[m] , true , i , m_children[i][m] ) ) );
}
const int& j = Parent( i );
if( j != -1 ){
children_value[j][m_children_num[i]] = f( temp , i );
}
temp = e;
vector<U>& right_sum_i = right_sum[i];
right_sum_i.resize( size_i );
for( int m = 1 ; m <= size_i ; m++ ){
right_sum_i[ size_i - m ] = temp;
temp = M.Product( g( children_value_i[size_i - m] , true , i , m_children[i][size_i - m] ) , temp );
}
}
// left_sum[i][m]children_value[i][0],...,children_value[i][m-1]
// gM
for( int n = 1 ; n < V ; n++ ){
const int& i = NodeNumber( n );
const int& j = Parent( i );
const int& k = ChildrenNumber( i );
vector<U>& left_sum_i = left_sum[i];
vector<U>& right_sum_i = right_sum[i];
const int size_i = right_sum_i.size();
// children_value[j][0],...,children_value[j][k-1]g
// rest_j
// children_value[j][k+1],...,children_value[j][size_i-1]g
// Mfg
const U rest_i = g( f( M.Product( left_sum[j][k] , right_sum[j][k] ) , j ) , false , i , j );
for( int m = 0 ; m <= size_i ; m++ ){
// left_sum_imrest_i
// children_value[i][0],...,children_value[i][m-1]g
// M
U& left_sum_im = left_sum_i[m];
left_sum_im = M.Product( rest_i , left_sum_im );
}
}
for( int i = 0 ; i < V ; i++ ){
// left_sum[i].back()children_value_i[0],...,children_value_i[size_i-1]
// gM
d[i] = f( left_sum[i].back() , i );
}
return;
}
// AAA
#define INCLUDE_SUB
#include __FILE__
#else // INCLUDE_LIBRARY
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode , use_getline ); if( exec_mode == sample_debug_mode
      || exec_mode == submission_debug_mode || exec_mode == library_search_mode ){ RE 0; } else if( exec_mode == experiment_mode ){ Experiment(); RE
      0; } else if( exec_mode == small_test_mode ){ SmallTest(); RE 0; }; DEXPR( int , bound_test_case_num , BOUND , min( BOUND , 100 ) ); int
      test_case_num = 1; if( exec_mode == solve_mode ){ if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } }
      else if( exec_mode == random_test_mode ){ CERR( "" ); SET_LL( test_case_num ); } FINISH_MAIN
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
#define ASSERT( A , MIN , MAX ) CERR( "ASSERT " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX )
      ); AS( ( MIN ) <= A && A <= ( MAX ) )
#define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ SET_LL( A ); ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode
      ){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { AS( false ); }
#define SOLVE_ONLY ST_AS( __FUNCTION__[0] == 'S' )
#define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl
#define COUT( ... ) VariadicCout( cout << " " , __VA_ARGS__ ) << endl
#define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl
#define COUT_A( A , N ) cout << " "; OUTPUT_ARRAY( cout , A , N ) << endl
#define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl
#define COUT_ITR( A ) cout << " "; OUTPUT_ITR( cout , A ) << endl
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize ( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){
      SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
#define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) )
#define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX )
#define SOLVE_ONLY
#define CERR( ... )
#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL
#define CERR_A( A , N )
#define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL
#define CERR_ITR( A )
#define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL
#endif
#ifdef REACTIVE
#define ENDL endl
#else
#define ENDL "\n"
#endif
#ifdef USE_GETLINE
#define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); }
#define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )
#define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ )
#else
#define SET_LL( A ) cin >> A
#define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )
#define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; }
#define CIN_A( LL , A , N ) VE<LL> A( N ); SET_A( A , N );
#endif
#include <bits/stdc++.h>
using namespace std;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); }
    Solve(); CERR( "" ); } }
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()
#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )
#define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE
#define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .BE() , end_ ## ARRAY = ARRAY .EN()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )
#define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1
    ?"":" "); } OS
#define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.BE() , EN_FOR_OUTPUT_ITR = A.EN(); bool VARIABLE_FOR_OUTPUT_ITR =
    ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; WH( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR =
    ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS
#define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE
#define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" ,
    #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; }
//
#define TE template
#define TY typename
#define US using
#define ST static
#define AS assert
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define LE length
#define PW Power
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
#define ST_AS static_assert
#define reMO_CO remove_const
#define is_COructible_v is_constructible_v
#define rBE rbegin
#define reSZ
//
#define decldecay_t( VAR ) decay_t<decltype( VAR )>
TE <TY F , TY...Args> US ret_t = decltype( declval<F>()( declval<Args>()... ) );
TE <TY T> US inner_t = TY T::type;
US uint = unsigned int;
US ll = long long;
US ull = unsigned long long;
US ld = long double;
US lld = __float128;
TE <TY INT> US T2 = pair<INT,INT>;
TE <TY INT> US T3 = tuple<INT,INT,INT>;
TE <TY INT> US T4 = tuple<INT,INT,INT,INT>;
US path = pair<int,ll>;
//
TE <CL Traits> IN basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { RE is; }
TE <CL Traits , TY Arg , TY... ARGS> IN basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg , ARGS&... args ) { RE
    VariadicCin( is >> arg , args... ); }
TE <CL Traits> IN basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , CO char& separator ) { RE is; }
TE <CL Traits , TY Arg , TY... ARGS> IN basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , CO char& separator , Arg& arg
    , ARGS&... args ) { RE VariadicGetline( getline( is , arg , separator ) , separator , args... ); }
TE <CL Traits , TY Arg> IN basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , CO VE<Arg>& arg ) { auto BE = arg.BE() , EN =
    arg.EN(); auto itr = BE; WH( itr != EN ){ ( itr == BE ? os : os << " " ) << *itr; itr++; } RE os; }
TE <CL Traits , TY Arg> IN basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , CO Arg& arg ) { RE os << arg; }
TE <CL Traits , TY Arg1 , TY Arg2 , TY... ARGS> IN basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , CO Arg1& arg1 , CO
    Arg2& arg2 , CO ARGS&... args ) { RE VariadicCout( os << arg1 << " " , arg2 , args... ); }
//
TE <TY T> CE T PositiveBaseResidue( CO T& a , CO T& p ){ RE a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }
TE <TY T> CE T Residue( CO T& a , CO T& p ){ RE PositiveBaseResidue( a , p < 0 ? -p : p ); }
TE <TY T> CE T PositiveBaseQuotient( CO T& a , CO T& p ){ RE ( a - PositiveBaseResidue( a , p ) ) / p; }
TE <TY T> CE T Quotient( CO T& a , CO T& p ){ RE p < 0 ? PositiveBaseQuotient( -a , -p ) : PositiveBaseQuotient( a , p ); }
#define POWER( ANSWER , ARGUMENT , EXPONENT ) \
ST_AS( ! is_same<decldecay_t( ARGUMENT ),int>::value && ! is_same<decldecay_t( ARGUMENT ),uint>::value ); \
decldecay_t( ARGUMENT ) ANSWER{ 1 }; \
{ \
decldecay_t( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
ll ANSWER{ 1 }; \
{ \
ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( ARGUMENT ) % ( MODULO ) ) % ( MODULO ); \
ARGUMENT_FOR_SQUARE_FOR_POWER < 0 ? ARGUMENT_FOR_SQUARE_FOR_POWER += ( MODULO ) : ARGUMENT_FOR_SQUARE_FOR_POWER; \
decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CE_LENGTH , MODULO ) \
ll ANSWER[CE_LENGTH]; \
ll ANSWER_INV[CE_LENGTH]; \
ll INVERSE[CE_LENGTH]; \
{ \
ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \
FOREQ( i , 1 , MAX_INDEX ){ \
ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \
} \
ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
FOREQ( i , 2 , MAX_INDEX ){ \
ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % (
          MODULO ) ) ) %= ( MODULO ); \
} \
} \
//
// EXPRESSIONANSWER調EXPRESSION >= CO_TARGET
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CO_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER )
    \
ST_AS( ! is_same<decldecay_t( CO_TARGET ),uint>::value && ! is_same<decldecay_t( CO_TARGET ),ull>::value ); \
ll ANSWER = MINIMUM; \
{ \
ll L_BS = MINIMUM; \
ll U_BS = MAXIMUM; \
ANSWER = UPDATE_ANSWER; \
ll EXPRESSION_BS; \
CO ll CO_TARGET_BS = ( CO_TARGET ); \
ll DIFFERENCE_BS; \
WH( L_BS < U_BS ){ \
DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CO_TARGET_BS; \
CERR( "" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS :" , #EXPRESSION , "-" , #CO_TARGET , "=" ,
          EXPRESSION_BS , "-" , CO_TARGET_BS , "=" , DIFFERENCE_BS ); \
if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \
U_BS = UPDATE_U; \
} else { \
L_BS = UPDATE_L; \
} \
ANSWER = UPDATE_ANSWER; \
} \
if( L_BS > U_BS ){ \
CERR( "" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \
CERR( "" ); \
ANSWER = MAXIMUM + 1; \
} else { \
CERR( "" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS" ); \
CERR( "" , #EXPRESSION , "" ); \
CERR( "" ); \
EXPRESSION_BS = ( EXPRESSION ); \
CERR( "" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CO_TARGET_BS ? ">" : EXPRESSION_BS < CO_TARGET_BS ? "<" : "=" )
          , CO_TARGET_BS ); \
if( EXPRESSION_BS DESIRED_INEQUALITY CO_TARGET_BS ){ \
CERR( "" , #ANSWER , ":=" , ANSWER ); \
} else { \
CERR( "" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \
CERR( "調調調" ); \
ANSWER = MAXIMUM + 1; \
} \
} \
} \
// 調EXPRESSION >= CO_TARGET
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , >= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) \
// 調EXPRESSION <= CO_TARGET
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , > , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) \
// 調EXPRESSION >= CO_TARGET
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , < , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) \
// 調EXPRESSION <= CO_TARGET
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , <= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) \
// titeratorend()
TE <TY T> IN TY set<T>::iterator MaximumLeq( set<T>& S , CO T& t ) { CO auto EN = S.EN(); if( S.empty() ){ RE EN; } auto itr = S.upper_bound( t );
    RE itr == EN ? S.find( *( S.rBE() ) ) : itr == S.BE() ? EN : --itr; }
// titeratorend()
TE <TY T> IN TY set<T>::iterator MaximumLt( set<T>& S , CO T& t ) { CO auto EN = S.EN(); if( S.empty() ){ RE EN; } auto itr = S.lower_bound( t ); RE
    itr == EN ? S.find( *( S.rBE() ) ) : itr == S.BE() ? EN : --itr; }
// titeratorend()
TE <TY T> IN TY set<T>::iterator MinimumGeq( set<T>& S , CO T& t ) { RE S.lower_bound( t ); }
// titeratorend()
TE <TY T> IN TY set<T>::iterator MinimumGt( set<T>& S , CO T& t ) { RE S.upper_bound( t ); }
//
TE <TY T , TE <TY...> TY V> IN V<T> OP+( CO V<T>& a0 , CO V<T>& a1 ) { if( a0.empty() ){ RE a1; } if( a1.empty() ){ RE a0; } AS( a0.SZ() == a1.SZ()
    ); V<T> answer{}; for( auto itr0 = a0.BE() , itr1 = a1.BE() , EN0 = a0.EN(); itr0 != EN0 ; itr0++ , itr1++ ){ answer.push_back( *itr0 + *itr1 );
    } RE answer; }
TE <TY T , TY U> IN pair<T,U> OP+( CO pair<T,U>& t0 , CO pair<T,U>& t1 ) { RE { t0.first + t1.first , t0.second + t1.second }; }
TE <TY T , TY U , TY V> IN tuple<T,U,V> OP+( CO tuple<T,U,V>& t0 , CO tuple<T,U,V>& t1 ) { RE { get<0>( t0 ) + get<0>( t1 ) , get<1>( t0 ) + get<1>(
    t1 ) , get<2>( t0 ) + get<2>( t1 ) }; }
TE <TY T , TY U , TY V , TY W> IN tuple<T,U,V,W> OP+( CO tuple<T,U,V,W>& t0 , CO tuple<T,U,V,W>& t1 ) { RE { get<0>( t0 ) + get<0>( t1 ) , get<1>(
    t0 ) + get<1>( t1 ) , get<2>( t0 ) + get<2>( t1 ) , get<3>( t0 ) + get<3>( t1 ) }; }
TE <TY T> IN T Add( CO T& t0 , CO T& t1 ) { RE t0 + t1; }
TE <TY T> IN T XorAdd( CO T& t0 , CO T& t1 ){ RE t0 ^ t1; }
TE <TY T> IN T Multiply( CO T& t0 , CO T& t1 ) { RE t0 * t1; }
TE <TY T> IN CO T& Zero() { ST CO T z{}; RE z; }
TE <TY T> IN CO T& One() { ST CO T o = 1; RE o; }\
TE <TY T> IN T AddInv( CO T& t ) { RE -t; }
TE <TY T> IN T Id( CO T& v ) { RE v; }
TE <TY T> IN T Min( CO T& a , CO T& b ){ RE a < b ? a : b; }
TE <TY T> IN T Max( CO T& a , CO T& b ){ RE a < b ? b : a; }
//
int H , W , H_minus , W_minus , HW;
VE<VE<bool>> non_wall;
IN T2<int> EnumHW( CRI v ) { RE { v / W , v % W }; }
IN int EnumHW_inv( CRI h , CRI w ) { RE h * W + w; }
CO string direction[4] = {"U","R","D","L"};
// (i,j)->(k,h)
IN int DirectionNumberOnGrid( CRI i , CRI j , CRI k , CRI h ){RE i<k?2:i>k?0:j<h?1:j>h?3:(AS(false),-1);}
// v->w
IN int DirectionNumberOnGrid( CRI v , CRI w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);RE DirectionNumberOnGrid(i,j,k,h);}
// U<->DR<->L
IN int ReverseDirectionNumberOnGrid( CRI n ){AS(0<=n&&n<4);RE(n+2)%4;}
IN VO SetEdgeOnGrid( CO string& Si , CRI i , LI<int> ( &e )[] , CO char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v = EnumHW_inv(i,j);if
    (i>0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back(v);}if(j>0){e[EnumHW_inv(i,j-1)].push_back(v);}if(j+1<W
    ){e[EnumHW_inv(i,j+1)].push_back(v);}}}}
IN VO SetEdgeOnGrid( CO string& Si , CRI i , LI<path> ( &e )[] , CO char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){CO int v=EnumHW_inv(i,j
    );if(i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back({v,1});}if(j>0){e[EnumHW_inv(i,j-1)].push_back({v,1}
    );}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back({v,1});}}}}
IN VO SetWallOnGrid( CO string& Si , CRI i , VE<VE<bool>>& non_wall , CO char& walkable = '.' , CO char& unwalkable = '#' ){non_wall.push_back(VE
    <bool>(W));auto& non_wall_i=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable),false);}}
//
#ifdef DEBUG
IN VO AlertAbort( int n ) { CERR( "abortassert
      " ); }
VO AutoCheck( int& exec_mode , CO bool& use_getline );
IN VO Solve();
IN VO Experiment();
IN VO SmallTest();
IN VO RandomTest();
ll GetRand( CRL Rand_min , CRL Rand_max );
IN VO BreakPoint( CRI LINE ) {}
int exec_mode;
CEXPR( int , solve_mode , 0 );
CEXPR( int , sample_debug_mode , 1 );
CEXPR( int , submission_debug_mode , 2 );
CEXPR( int , library_search_mode , 3 );
CEXPR( int , experiment_mode , 4 );
CEXPR( int , small_test_mode , 5 );
CEXPR( int , random_test_mode , 6 );
#ifdef USE_GETLINE
CEXPR( bool , use_getline , true );
#else
CEXPR( bool , use_getline , false );
#endif
#else
ll GetRand( CRL Rand_min , CRL Rand_max ) { ll answer = time( NULL ); RE answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; }
#endif
// VVV
// Map
// c:/Users/user/Documents/Programming/Mathematics/Function/Map/compress.txt
CL is_ordered{PU:is_ordered()= delete;TE <TY T> ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE <TY T> ST CE
    CO bool value = is_same_v< decltype(Check(declval<T>())),true_type >;};
TE <TY T , TY U>US Map = conditional_t<is_COructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,VO>>;
// Algebra
// c:/Users/user/Documents/Programming/Mathematics/Algebra/compress.txt
#define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE
#define DC_OF_POINT(POINT)IN U& POINT() NE
#define DF_OF_CPOINT(POINT)TE <TY U> IN CO U& VirtualPointedSet<U>::POINT()CO NE{RE Point();}
#define DF_OF_POINT(POINT)TE <TY U> IN U& VirtualPointedSet<U>::POINT()NE{RE Point();}
TE <TY U>CL VirtualPointedSet{PU:virtual CO U& Point()CO NE = 0;virtual U& Point() NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One
    );DC_OF_CPOINT(Infty);DC_OF_CPOINT(size);DC_OF_POINT(init);DC_OF_POINT(root);};TE <TY U>CL PointedSet:virtual PU VirtualPointedSet<U>{PU:U m_b_U
    ;IN PointedSet(CO U& b_u = U());IN CO U& Point()CO NE;IN U& Point() NE;};TE <TY U>CL VirtualNSet{PU:virtual U Transfer(CO U& u)= 0;IN U Inverse
    (CO U& u);};TE <TY U,TY F_U>CL AbstractNSet:virtual PU VirtualNSet<U>{PU:F_U& m_f_U;IN AbstractNSet(F_U& f_U);IN U Transfer(CO U& u);};TE <TY U
    >CL VirtualMagma{PU:virtual U Product(CO U& u0,CO U& u1)= 0;IN U Sum(CO U& u0,CO U& u1);};TE <TY U,TY M_U>CL AbstractMagma:virtual PU
    VirtualMagma<U>{PU:M_U& m_m_U;IN AbstractMagma(M_U& m_U);IN U Product(CO U& u0,CO U& u1);};
TE <TY U> IN PointedSet<U>::PointedSet(CO U& b_U):m_b_U(b_U){}TE <TY U> IN CO U& PointedSet<U>::Point()CO NE{RE m_b_U;}TE <TY U> IN U& PointedSet<U
    >::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_CPOINT(size);DF_OF_POINT(init
    );DF_OF_POINT(root);TE <TY U,TY F_U> IN AbstractNSet<U,F_U>::AbstractNSet(F_U& f_U):m_f_U(f_U){ST_AS(is_invocable_r_v<U,F_U,U>);}TE <TY U,TY F_U
    > IN U AbstractNSet<U,F_U>::Transfer(CO U& u){RE m_f_U(u);}TE <TY U> IN U VirtualNSet<U>::Inverse(CO U& u){RE Transfer(u);}TE <TY U,TY M_U> IN
    AbstractMagma<U,M_U>::AbstractMagma(M_U& m_U):m_m_U(m_U){ST_AS(is_invocable_r_v<U,M_U,U,U>);}TE <TY U,TY M_U> IN U AbstractMagma<U,M_U>::Product
    (CO U& u0,CO U& u1){RE m_m_U(u0,u1);}TE <TY U> IN U VirtualMagma<U>::Sum(CO U& u0,CO U& u1){RE Product(u0,u1);}
TE <TY U>CL VirtualMonoid:virtual PU VirtualMagma<U>,virtual PU VirtualPointedSet<U>{};TE <TY U = ll>CL AdditiveMonoid:virtual PU VirtualMonoid<U
    >,PU PointedSet<U>{PU:IN U Product(CO U& u0,CO U& u1);};TE <TY U = ll>CL MultiplicativeMonoid:virtual PU VirtualMonoid<U>,PU PointedSet<U>{PU:IN
    MultiplicativeMonoid(CO U& e_U);IN U Product(CO U& u0,CO U& u1);};TE <TY U,TY M_U>CL AbstractMonoid:virtual PU VirtualMonoid<U>,PU AbstractMagma
    <U,M_U>,PU PointedSet<U>{PU:IN AbstractMonoid(M_U& m_U,CO U& e_U);IN U Product(CO U& u0,CO U& u1);};
TE <TY U> IN MultiplicativeMonoid<U>::MultiplicativeMonoid(CO U& e_U):PointedSet<U>(e_U){}TE <TY U,TY M_U> IN AbstractMonoid<U,M_U>::AbstractMonoid
    (M_U& m_U,CO U& e_U):AbstractMagma<U,M_U>(m_U),PointedSet<U>(e_U){}TE <TY U> IN U AdditiveMonoid<U>::Product(CO U& u0,CO U& u1){RE u0 + u1;}TE
    <TY U> IN U MultiplicativeMonoid<U>::Product(CO U& u0,CO U& u1){RE u0 * u1;}TE <TY U,TY M_U> IN U AbstractMonoid<U,M_U>::Product(CO U& u0,CO U&
    u1){RE m_m_U(u0,u1);}
TE <TY U>CL VirtualGroup:virtual PU VirtualMonoid<U>,virtual PU VirtualPointedSet<U>,virtual PU VirtualNSet<U>{};TE <TY U = ll>CL AdditiveGroup
    :virtual PU VirtualGroup<U>,PU AdditiveMonoid<U>{PU:IN U Transfer(CO U& u);};TE <TY U,TY M_U,TY I_U>CL AbstractGroup:virtual PU VirtualGroup<U
    >,PU AbstractMonoid<U,M_U>,PU AbstractNSet<U,I_U>{PU:IN AbstractGroup(M_U& m_U,CO U& e_U,I_U& i_U);IN U Transfer(CO U& u);};TE <TY U,TY M_U,TY
    I_U> IN AbstractGroup<U,M_U,I_U>::AbstractGroup(M_U& m_U,CO U& e_U,I_U& i_U):AbstractMonoid<U,M_U>(m_U,e_U),AbstractNSet<U,I_U>(i_U){}TE <TY U
    ,TY M_U,TY I_U> IN U AbstractGroup<U,M_U,I_U>::Transfer(CO U& u){RE m_i_U(u);}TE <TY U> IN U AdditiveGroup<U>::Transfer(CO U& u){RE -u;}
TE <TY U,TY GROUP,TY MONOID>CL VirtualRing{PU:GROUP m_R0;MONOID m_R1;IN VirtualRing(GROUP R0,MONOID R1);IN U Sum(CO U& u0,CO U& u1);IN CO U& Zero
    ()CO NE;IN U Inverse(CO U& u);IN U Product(CO U& u0,CO U& u1);IN CO U& One()CO NE;IN GROUP& AdditiveGroup()NE;IN MONOID& MultiplicativeMonoid
    ()NE;};TE <TY U = ll>CL Ring:virtual PU VirtualRing<U,AdditiveGroup<U>,MultiplicativeMonoid<U>>{PU:IN Ring(CO U& one_U);};TE <TY U,TY A_U,TY I_U
    ,TY M_U>CL AbstractRing:virtual PU VirtualRing<U,AbstractGroup<U,A_U,I_U>,AbstractMonoid<U,M_U>>{PU:IN AbstractRing(A_U& a_U,CO U& z_U,I_U& i_U
    ,M_U& m_U,CO U& e_U);};
TE <TY U,TY GROUP,TY MONOID> IN VirtualRing<U,GROUP,MONOID>::VirtualRing(GROUP R0,MONOID R1):m_R0(MO(R0)),m_R1(MO(R1)){}TE <TY U> IN Ring<U>::Ring
    (CO U& one_U):VirtualRing<U,AdditiveGroup<U>,MultiplicativeMonoid<U>>(AdditiveGroup<U>(),MultiplicativeMonoid<U>(one_U)){}TE <TY U,TY A_U,TY I_U
    ,TY M_U> IN AbstractRing<U,A_U,I_U,M_U>::AbstractRing(A_U& a_U,CO U& z_U,I_U& i_U,M_U& m_U,CO U& e_U):VirtualRing<U,AbstractGroup<U,A_U,I_U
    >,AbstractMonoid<U,M_U>>(AbstractGroup<U,A_U,I_U>(a_U,z_U,i_U),AbstractMonoid<U,M_U>(m_U,e_U)){}TE <TY U,TY GROUP,TY MONOID> IN U VirtualRing<U
    ,GROUP,MONOID>::Sum(CO U& u0,CO U& u1){RE m_R0.Sum(u0,u1);}TE <TY U,TY GROUP,TY MONOID> IN CO U& VirtualRing<U,GROUP,MONOID>::Zero()CO NE{RE
    m_R0.Zero();}TE <TY U,TY GROUP,TY MONOID> IN U VirtualRing<U,GROUP,MONOID>::Inverse(CO U& u){RE m_R0.Inverse(u);}TE <TY U,TY GROUP,TY MONOID> IN
    U VirtualRing<U,GROUP,MONOID>::Product(CO U& u0,CO U& u1){RE m_R1.Product(u0,u1);}TE <TY U,TY GROUP,TY MONOID> IN CO U& VirtualRing<U,GROUP
    ,MONOID>::One()CO NE{RE m_R1.One();}TE <TY U,TY GROUP,TY MONOID> IN GROUP& VirtualRing<U,GROUP,MONOID>::AdditiveGroup()NE{RE m_R0;}TE <TY U,TY
    GROUP,TY MONOID> IN MONOID& VirtualRing<U,GROUP,MONOID>::MultiplicativeMonoid()NE{RE m_R1;}
// Graph
// c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/compress.txt
#define SFINAE_FOR_GRAPH TY T,TY E,enable_if_t<is_invocable_v<E,T>,void*> PTR
TE <TY T,TY R1,TY R2,TY E>CL VirtualGraph:PU PointedSet<int>{PU:E m_edge;IN VirtualGraph(CRI SZ,E edge);virtual R1 Enumeration(CRI i)= 0;virtual R2
    Enumeration_inv(CO T& t)= 0;IN VO Reset();IN E& edge()NE;IN ret_t<E,T> Edge(CO T& t);US type = T;};TE <TY E>CL Graph:virtual PU VirtualGraph<int
    ,CRI,CRI,E>{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i);IN CRI Enumeration_inv(CRI t);TE <TY F> IN Graph<F> GetGraph(F edge)CO;};TE <TY
    T,TY Enum_T,TY Enum_T_inv,TY E>CL EnumerationGraph:virtual PU VirtualGraph<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>{PU:Enum_T& m_enum_T
    ;Enum_T_inv& m_enum_T_inv;IN EnumerationGraph(CRI SZ,Enum_T& enum_T,Enum_T_inv& enum_T_inv,E edge);IN ret_t<Enum_T,int> Enumeration(CRI i);IN
    ret_t<Enum_T_inv,T> Enumeration_inv(CO T& t);TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> GetGraph(F edge)CO;};TE <TY Enum_T,TY
    Enum_T_inv,TY E> EnumerationGraph(CRI SZ,Enum_T& enum_T,Enum_T_inv& enum_T_inv,E edge)-> EnumerationGraph<decldecay_t(declval<Enum_T>()(0
    )),Enum_T,Enum_T_inv,E>;TE <SFINAE_FOR_GRAPH = nullptr>CL MemorisationGraph:virtual PU VirtualGraph<T,T,CRI,E>{PU:int m_LE;VE<T> m_memory;Map<T
    ,int> m_memory_inv;IN MemorisationGraph(CRI SZ,E edge);IN T Enumeration(CRI i);IN CRI Enumeration_inv(CO T& t);IN VO Reset();TE <TY F> IN
    MemorisationGraph<T,F> GetGraph(F edge)CO;};TE <TY E> MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph<decldecay_t(declval<E>()().back()),E
    >;TE <TY E> MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph<decldecay_t(get<0>(declval<E>()().back())),E>;
TE <TY T,TY R1,TY R2,TY E> IN VirtualGraph<T,R1,R2,E>::VirtualGraph(CRI SZ,E edge):PointedSet<int>(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v<T,R1>
    && is_COructible_v<int,R2> && is_invocable_v<E,T>);}TE <TY E> IN Graph<E>::Graph(CRI SZ,E edge):VirtualGraph<int,CRI,CRI,E>(SZ,MO(edge)){}TE <TY
    T,TY Enum_T,TY Enum_T_inv,TY E> IN EnumerationGraph<T,Enum_T,Enum_T_inv,E>::EnumerationGraph(CRI SZ,Enum_T& enum_T,Enum_T_inv& enum_T_inv,E edge
    ):VirtualGraph<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>(SZ,MO(edge)),m_enum_T(enum_T),m_enum_T_inv(enum_T_inv){}TE <SFINAE_FOR_GRAPH> IN
    MemorisationGraph<T,E,PTR>::MemorisationGraph(CRI SZ,E edge):VirtualGraph<T,T,CRI,E>(SZ,MO(edge)),m_LE(),m_memory(),m_memory_inv(){}TE <TY T,TY
    R1,TY R2,TY E> IN E& VirtualGraph<T,R1,R2,E>::edge()NE{RE m_edge;}TE <TY T,TY R1,TY R2,TY E> IN ret_t<E,T> VirtualGraph<T,R1,R2,E>::Edge(CO T& t
    ){RE m_edge(t);}TE <TY E> IN CRI Graph<E>::Enumeration(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN ret_t<Enum_T,int> EnumerationGraph
    <T,Enum_T,Enum_T_inv,E>::Enumeration(CRI i){RE m_enum_T(i);}TE <SFINAE_FOR_GRAPH> IN T MemorisationGraph<T,E,PTR>::Enumeration(CRI i){AS(0 <= i
    && i < m_LE);RE m_memory[i];}TE <TY E> IN CRI Graph<E>::Enumeration_inv(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN ret_t<Enum_T_inv
    ,T> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration_inv(CO T& t){RE m_enum_T_inv(t);}TE <SFINAE_FOR_GRAPH> IN CRI MemorisationGraph<T,E,PTR
    >::Enumeration_inv(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]= m_LE++;}RE
    m_memory_inv[t];}TE <TY T,TY R1,TY R2,TY E> VO VirtualGraph<T,R1,R2,E>::Reset(){}TE <SFINAE_FOR_GRAPH> IN VO MemorisationGraph<T,E,PTR>::Reset
    (){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE <TY E> TE <TY F> IN Graph<F> Graph<E>::GetGraph(F edge)CO{RE Graph<F>(TH->SZ(),MO(edge
    ));}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> EnumerationGraph<T,Enum_T,Enum_T_inv,E
    >::GetGraph(F edge)CO{RE EnumerationGraph(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE <SFINAE_FOR_GRAPH> TE <TY F> IN MemorisationGraph<T,F>
    MemorisationGraph<T,E,PTR>::GetGraph(F edge)CO{RE MemorisationGraph(TH->SZ(),MO(edge));}
// AAA
#define INCLUDE_LIBRARY
#include __FILE__
#endif // INCLUDE_LIBRARY
#endif // INCLUDE_SUB
#endif // INCLUDE_MAIN
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0