結果
問題 | No.2613 Sum of Combination |
ユーザー | Misuki |
提出日時 | 2024-01-23 17:41:40 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 213 ms / 4,500 ms |
コード長 | 9,975 bytes |
コンパイル時間 | 3,730 ms |
コンパイル使用メモリ | 232,076 KB |
実行使用メモリ | 14,940 KB |
最終ジャッジ日時 | 2024-09-28 06:49:58 |
合計ジャッジ時間 | 9,231 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 6 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 1 ms
5,376 KB |
testcase_10 | AC | 1 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 8 ms
5,376 KB |
testcase_14 | AC | 8 ms
5,376 KB |
testcase_15 | AC | 5 ms
5,376 KB |
testcase_16 | AC | 8 ms
5,376 KB |
testcase_17 | AC | 8 ms
5,376 KB |
testcase_18 | AC | 8 ms
5,376 KB |
testcase_19 | AC | 9 ms
5,376 KB |
testcase_20 | AC | 3 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 15 ms
5,376 KB |
testcase_23 | AC | 199 ms
14,088 KB |
testcase_24 | AC | 199 ms
14,068 KB |
testcase_25 | AC | 191 ms
13,012 KB |
testcase_26 | AC | 205 ms
14,856 KB |
testcase_27 | AC | 102 ms
9,388 KB |
testcase_28 | AC | 198 ms
14,784 KB |
testcase_29 | AC | 197 ms
14,320 KB |
testcase_30 | AC | 199 ms
14,868 KB |
testcase_31 | AC | 206 ms
14,508 KB |
testcase_32 | AC | 200 ms
14,256 KB |
testcase_33 | AC | 201 ms
14,916 KB |
testcase_34 | AC | 198 ms
14,916 KB |
testcase_35 | AC | 201 ms
14,920 KB |
testcase_36 | AC | 202 ms
14,940 KB |
testcase_37 | AC | 198 ms
14,916 KB |
testcase_38 | AC | 191 ms
14,832 KB |
testcase_39 | AC | 197 ms
14,760 KB |
testcase_40 | AC | 194 ms
14,888 KB |
testcase_41 | AC | 197 ms
14,700 KB |
testcase_42 | AC | 213 ms
14,688 KB |
testcase_43 | AC | 196 ms
14,756 KB |
testcase_44 | AC | 196 ms
14,912 KB |
testcase_45 | AC | 2 ms
5,376 KB |
testcase_46 | AC | 2 ms
5,376 KB |
testcase_47 | AC | 2 ms
5,376 KB |
testcase_48 | AC | 2 ms
5,376 KB |
testcase_49 | AC | 2 ms
5,376 KB |
testcase_50 | AC | 198 ms
14,912 KB |
testcase_51 | AC | 197 ms
14,892 KB |
ソースコード
#pragma GCC optimize("O2") #include <algorithm> #include <array> #include <bit> #include <bitset> #include <cassert> #include <cctype> #include <cfenv> #include <cfloat> #include <chrono> #include <cinttypes> #include <climits> #include <cmath> #include <compare> #include <complex> #include <concepts> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <deque> #include <fstream> #include <functional> #include <initializer_list> #include <iomanip> #include <ios> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> #include <map> #include <memory> #include <new> #include <numbers> #include <numeric> #include <ostream> #include <queue> #include <random> #include <ranges> #include <set> #include <span> #include <sstream> #include <stack> #include <streambuf> #include <string> #include <tuple> #include <type_traits> #include <variant> //#define int ll #define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1) #define INT128_MIN (-INT128_MAX - 1) #define clock chrono::steady_clock::now().time_since_epoch().count() #ifdef DEBUG #define dbg(x) cout << (#x) << " = " << x << '\n' #else #define dbg(x) #endif namespace R = std::ranges; namespace V = std::views; using namespace std; using ll = long long; using ull = unsigned long long; using ldb = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; //#define double ldb template<class T> ostream& operator<<(ostream& os, const pair<T, T> pr) { return os << pr.first << ' ' << pr.second; } template<class T, size_t N> ostream& operator<<(ostream& os, const array<T, N> &arr) { for(const T &X : arr) os << X << ' '; return os; } template<class T> ostream& operator<<(ostream& os, const vector<T> &vec) { for(const T &X : vec) os << X << ' '; return os; } template<class T> ostream& operator<<(ostream& os, const set<T> &s) { for(const T &x : s) os << x << ' '; return os; } /** * template name: MontgomeryModInt * author: Misuki * reference: https://github.com/NyaanNyaan/library/blob/master/modint/montgomery-modint.hpp#L10 * last update: 2023/11/30 * note: mod should be a prime less than 2^30. */ template<uint32_t mod> struct MontgomeryModInt { using mint = MontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 res = 1, base = mod; for(i32 i = 0; i < 31; i++) res *= base, base *= base; return -res; } static constexpr u32 get_mod() { return mod; } static constexpr u32 n2 = -u64(mod) % mod; //2^64 % mod static constexpr u32 r = get_r(); //-P^{-1} % 2^32 u32 a; static u32 reduce(const u64 &b) { return (b + u64(u32(b) * r) * mod) >> 32; } static u32 transform(const u64 &b) { return reduce(u64(b) * n2); } MontgomeryModInt() : a(0) {} MontgomeryModInt(const int64_t &b) : a(transform(b % mod + mod)) {} mint pow(u64 k) const { mint res(1), base(*this); while(k) { if (k & 1) res *= base; base *= base, k >>= 1; } return res; } mint inverse() const { return (*this).pow(mod - 2); } u32 get() const { u32 res = reduce(a); return res >= mod ? res - mod : res; } mint& operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint& operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } mint& operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } mint& operator/=(const mint &b) { a = reduce(u64(a) * b.inverse().a); return *this; } mint operator-() { return mint() - mint(*this); } bool operator==(mint b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(mint b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } friend mint operator+(mint a, mint b) { return a += b; } friend mint operator-(mint a, mint b) { return a -= b; } friend mint operator*(mint a, mint b) { return a *= b; } friend mint operator/(mint a, mint b) { return a /= b; } friend ostream& operator<<(ostream& os, const mint& b) { return os << b.get(); } friend istream& operator>>(istream& is, mint& b) { int64_t val; is >> val; b = mint(val); return is; } }; using mint = MontgomeryModInt<998244353>; /** * template name: NTTmint * reference: https://judge.yosupo.jp/submission/69896 * last update: 2024/01/07 * include: mint * remark: MOD = 2^K * C + 1, R is a primitive root modulo MOD * remark: a.size() <= 2^K must be satisfied * some common modulo: 998244353 = 2^23 * 119 + 1, R = 3 * 469762049 = 2^26 * 7 + 1, R = 3 * 1224736769 = 2^24 * 73 + 1, R = 3 * verify: Library Checker - Convolution */ template<int32_t k = 23, int32_t c = 119, int32_t r = 3, class Mint = MontgomeryModInt<998244353>> struct NTT { using u32 = uint32_t; static constexpr u32 mod = (1 << k) * c + 1; static constexpr u32 get_mod() { return mod; } static void ntt(vector<Mint> &a, bool inverse) { static array<Mint, 30> w, w_inv; if (w[0] == 0) { Mint root = 2; while(root.pow((mod - 1) / 2) == 1) root += 1; for(int i = 0; i < 30; i++) w[i] = -(root.pow((mod - 1) >> (i + 2))), w_inv[i] = 1 / w[i]; } int n = ssize(a); if (not inverse) { for(int m = n; m >>= 1; ) { Mint ww = 1; for(int s = 0, l = 0; s < n; s += 2 * m) { for(int i = s, j = s + m; i < s + m; i++, j++) { Mint x = a[i], y = a[j] * ww; a[i] = x + y, a[j] = x - y; } ww *= w[__builtin_ctz(++l)]; } } } else { for(int m = 1; m < n; m *= 2) { Mint ww = 1; for(int s = 0, l = 0; s < n; s += 2 * m) { for(int i = s, j = s + m; i < s + m; i++, j++) { Mint x = a[i], y = a[j]; a[i] = x + y, a[j] = (x - y) * ww; } ww *= w_inv[__builtin_ctz(++l)]; } } Mint inv = 1 / Mint(n); for(Mint &x : a) x *= inv; } } static vector<Mint> conv(vector<Mint> a, vector<Mint> b) { int sz = ssize(a) + ssize(b) - 1; int n = bit_ceil((u32)sz); a.resize(n, 0); ntt(a, false); b.resize(n, 0); ntt(b, false); for(int i = 0; i < n; i++) a[i] *= b[i]; ntt(a, true); a.resize(sz); return a; } }; //source: KACTL(https://github.com/kth-competitive-programming/kactl) ull modmul(ull a, ull b, ull M) { ll ret = a * b - M * ull(1.L / M * a * b); return ret + M * (ret < 0) - M * (ret >= (ll)M); } ull modpow(ull b, ull e, ull mod) { ull ans = 1; for (; e; b = modmul(b, b, mod), e /= 2) if (e & 1) ans = modmul(ans, b, mod); return ans; } bool isPrime(ull n) { if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3; ull A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}, s = __builtin_ctzll(n-1), d = n >> s; for (ull a : A) { // ^ count trailing zeroes ull p = modpow(a%n, d, n), i = s; while (p != 1 && p != n - 1 && a % n && i--) p = modmul(p, p, n); if (p != n-1 && i != s) return 0; } return 1; } ull pollard(ull n) { static mt19937_64 rng(clock); uniform_int_distribution<ull> unif(0, n - 1); ull c = 1; auto f = [n, &c](ull x) { return modmul(x, x, n) + c % n; }; ull x = 0, y = 0, t = 30, prd = 2, i = 1, q; while (t++ % 40 || __gcd(prd, n) == 1) { if (x == y) c = unif(rng), x = ++i, y = f(x); if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q; x = f(x), y = f(f(y)); } return __gcd(prd, n); } vector<ull> factor(ull n) { if (n == 1) return {}; if (isPrime(n)) return {n}; ull x = pollard(n); auto l = factor(x), r = factor(n / x); l.insert(l.end(), r.begin(), r.end()); return l; } //#include "fastFactorize.cpp" ull primitiveRoot(ull p) { auto fac = factor(p - 1); R::sort(fac); fac.resize(unique(fac.begin(), fac.end()) - fac.begin()); auto test = [p, fac](ull x) { for(ull d : fac) if (modpow(x, (p - 1) / d, p) == 1) return false; return true; }; static mt19937_64 rng(clock); uniform_int_distribution<ull> unif(1, p - 1); ull root; while(!test(root = unif(rng))); return root; } struct mulConvolution { const int P, root; vector<int> powR, logR; mulConvolution(int _P) : P(_P), root(primitiveRoot(_P)), powR(P - 1), logR(P) { for(int i = 0, tmp = 1; i < P - 1; i++, tmp = (ll)tmp * root % P) powR[i] = tmp, logR[tmp] = i; } template<class Mint> vector<Mint> transform(vector<Mint> &f) { assert(ssize(f) == P); vector<Mint> g(P - 1); for(int i = 1; i < P; i++) g[logR[i]] = f[i]; return g; } template<class Mint> vector<Mint> invTransform(vector<Mint> &f) { assert(ssize(f) == P - 1); vector<Mint> g(P); for(int i = 0; i < P - 1; i++) g[powR[i]] = f[i]; return g; } }; int p; int fac[200000], facInv[200000]; int C(int a, int b) { if (b > a or b < 0) return 0; else return (ll)fac[a] * facInv[b] % p * facInv[a - b] % p; } NTT ntt; signed main() { ios::sync_with_stdio(false), cin.tie(NULL); ll n; cin >> n >> p; fac[0] = 1; for(int i = 1; i < p; i++) fac[i] = (ll)fac[i - 1] * i % p; facInv[p - 1] = modpow(fac[p - 1], p - 2, p); for(int i = p - 2; i >= 0; i--) facInv[i] = (ll)facInv[i + 1] * (i + 1) % p; mulConvolution mu(p); vector<mint> f(p - 1); f[0] = 1; while(n) { int nd = n % p; n /= p; vector<mint> g(p); for(int i = 0; i < p; i++) g[C(nd, i)] += 1; g = mu.transform(g); f = ntt.conv(f, g); for(int i = p - 1; i < 2 * p - 3; i++) f[i - (p - 1)] += f[i]; f.resize(p - 1); } f = mu.invTransform(f); mint ans = 0; for(int i = 1; i < p; i++) ans += f[i] * i; cout << ans << '\n'; return 0; }