結果
問題 | No.2613 Sum of Combination |
ユーザー | Misuki |
提出日時 | 2024-01-26 04:49:33 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 207 ms / 4,500 ms |
コード長 | 9,306 bytes |
コンパイル時間 | 2,254 ms |
コンパイル使用メモリ | 199,428 KB |
実行使用メモリ | 15,192 KB |
最終ジャッジ日時 | 2024-09-28 07:27:10 |
合計ジャッジ時間 | 8,270 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 6 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 7 ms
6,940 KB |
testcase_14 | AC | 8 ms
6,940 KB |
testcase_15 | AC | 5 ms
6,940 KB |
testcase_16 | AC | 8 ms
6,940 KB |
testcase_17 | AC | 8 ms
6,940 KB |
testcase_18 | AC | 8 ms
6,940 KB |
testcase_19 | AC | 8 ms
6,944 KB |
testcase_20 | AC | 2 ms
6,940 KB |
testcase_21 | AC | 2 ms
6,940 KB |
testcase_22 | AC | 13 ms
6,940 KB |
testcase_23 | AC | 194 ms
13,872 KB |
testcase_24 | AC | 192 ms
13,820 KB |
testcase_25 | AC | 185 ms
12,512 KB |
testcase_26 | AC | 203 ms
14,980 KB |
testcase_27 | AC | 99 ms
9,312 KB |
testcase_28 | AC | 193 ms
14,784 KB |
testcase_29 | AC | 192 ms
14,396 KB |
testcase_30 | AC | 203 ms
15,132 KB |
testcase_31 | AC | 198 ms
14,312 KB |
testcase_32 | AC | 195 ms
14,072 KB |
testcase_33 | AC | 199 ms
15,060 KB |
testcase_34 | AC | 199 ms
15,064 KB |
testcase_35 | AC | 198 ms
15,060 KB |
testcase_36 | AC | 200 ms
15,188 KB |
testcase_37 | AC | 199 ms
15,188 KB |
testcase_38 | AC | 197 ms
14,864 KB |
testcase_39 | AC | 198 ms
14,768 KB |
testcase_40 | AC | 192 ms
14,756 KB |
testcase_41 | AC | 198 ms
14,944 KB |
testcase_42 | AC | 207 ms
14,944 KB |
testcase_43 | AC | 199 ms
15,060 KB |
testcase_44 | AC | 191 ms
15,064 KB |
testcase_45 | AC | 2 ms
6,944 KB |
testcase_46 | AC | 2 ms
6,940 KB |
testcase_47 | AC | 1 ms
6,944 KB |
testcase_48 | AC | 2 ms
6,940 KB |
testcase_49 | AC | 2 ms
6,944 KB |
testcase_50 | AC | 195 ms
15,188 KB |
testcase_51 | AC | 191 ms
15,192 KB |
ソースコード
#define PROBLEM "https://yukicoder.me/problems/no/2613" //#include "../default/t.cpp"; //#include "../modint/MontgomeryModInt.cpp" //#include "../poly/NTTmint.cpp" //#include "../numtheory/fastFactorize.cpp" //#include "../numtheory/primitiveRoot.cpp" //#include "../poly/mulConvolution.cpp" #include <algorithm> #include <array> #include <bit> #include <bitset> #include <cassert> #include <cctype> #include <cfenv> #include <cfloat> #include <chrono> #include <cinttypes> #include <climits> #include <cmath> #include <compare> #include <complex> #include <concepts> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <deque> #include <fstream> #include <functional> #include <initializer_list> #include <iomanip> #include <ios> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> #include <map> #include <memory> #include <new> #include <numbers> #include <numeric> #include <ostream> #include <queue> #include <random> #include <ranges> #include <set> #include <span> #include <sstream> #include <stack> #include <streambuf> #include <string> #include <tuple> #include <type_traits> #include <variant> #define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1) #define INT128_MIN (-INT128_MAX - 1) #define clock chrono::steady_clock::now().time_since_epoch().count() namespace R = std::ranges; namespace V = std::views; using namespace std; using ll = long long; using ull = unsigned long long; using ldb = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; template<class T> ostream& operator<<(ostream& os, const pair<T, T> pr) { return os << pr.first << ' ' << pr.second; } template<class T, size_t N> ostream& operator<<(ostream& os, const array<T, N> &arr) { for(const T &X : arr) os << X << ' '; return os; } template<class T> ostream& operator<<(ostream& os, const vector<T> &vec) { for(const T &X : vec) os << X << ' '; return os; } template<class T> ostream& operator<<(ostream& os, const set<T> &s) { for(const T &x : s) os << x << ' '; return os; } //reference: https://github.com/NyaanNyaan/library/blob/master/modint/montgomery-modint.hpp#L10 //note: mod should be a prime less than 2^30. template<uint32_t mod> struct MontgomeryModInt { using mint = MontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 res = 1, base = mod; for(i32 i = 0; i < 31; i++) res *= base, base *= base; return -res; } static constexpr u32 get_mod() { return mod; } static constexpr u32 n2 = -u64(mod) % mod; //2^64 % mod static constexpr u32 r = get_r(); //-P^{-1} % 2^32 u32 a; static u32 reduce(const u64 &b) { return (b + u64(u32(b) * r) * mod) >> 32; } static u32 transform(const u64 &b) { return reduce(u64(b) * n2); } MontgomeryModInt() : a(0) {} MontgomeryModInt(const int64_t &b) : a(transform(b % mod + mod)) {} mint pow(u64 k) const { mint res(1), base(*this); while(k) { if (k & 1) res *= base; base *= base, k >>= 1; } return res; } mint inverse() const { return (*this).pow(mod - 2); } u32 get() const { u32 res = reduce(a); return res >= mod ? res - mod : res; } mint& operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint& operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } mint& operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } mint& operator/=(const mint &b) { a = reduce(u64(a) * b.inverse().a); return *this; } mint operator-() { return mint() - mint(*this); } bool operator==(mint b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(mint b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } friend mint operator+(mint a, mint b) { return a += b; } friend mint operator-(mint a, mint b) { return a -= b; } friend mint operator*(mint a, mint b) { return a *= b; } friend mint operator/(mint a, mint b) { return a /= b; } friend ostream& operator<<(ostream& os, const mint& b) { return os << b.get(); } friend istream& operator>>(istream& is, mint& b) { int64_t val; is >> val; b = mint(val); return is; } }; using mint = MontgomeryModInt<998244353>; //reference: https://judge.yosupo.jp/submission/69896 //remark: MOD = 2^K * C + 1, R is a primitive root modulo MOD //remark: a.size() <= 2^K must be satisfied //some common modulo: 998244353 = 2^23 * 119 + 1, R = 3 // 469762049 = 2^26 * 7 + 1, R = 3 // 1224736769 = 2^24 * 73 + 1, R = 3 template<int32_t k = 23, int32_t c = 119, int32_t r = 3, class Mint = MontgomeryModInt<998244353>> struct NTT { using u32 = uint32_t; static constexpr u32 mod = (1 << k) * c + 1; static constexpr u32 get_mod() { return mod; } static void ntt(vector<Mint> &a, bool inverse) { static array<Mint, 30> w, w_inv; if (w[0] == 0) { Mint root = 2; while(root.pow((mod - 1) / 2) == 1) root += 1; for(int i = 0; i < 30; i++) w[i] = -(root.pow((mod - 1) >> (i + 2))), w_inv[i] = 1 / w[i]; } int n = ssize(a); if (not inverse) { for(int m = n; m >>= 1; ) { Mint ww = 1; for(int s = 0, l = 0; s < n; s += 2 * m) { for(int i = s, j = s + m; i < s + m; i++, j++) { Mint x = a[i], y = a[j] * ww; a[i] = x + y, a[j] = x - y; } ww *= w[__builtin_ctz(++l)]; } } } else { for(int m = 1; m < n; m *= 2) { Mint ww = 1; for(int s = 0, l = 0; s < n; s += 2 * m) { for(int i = s, j = s + m; i < s + m; i++, j++) { Mint x = a[i], y = a[j]; a[i] = x + y, a[j] = (x - y) * ww; } ww *= w_inv[__builtin_ctz(++l)]; } } Mint inv = 1 / Mint(n); for(Mint &x : a) x *= inv; } } static vector<Mint> conv(vector<Mint> a, vector<Mint> b) { int sz = ssize(a) + ssize(b) - 1; int n = bit_ceil((u32)sz); a.resize(n, 0); ntt(a, false); b.resize(n, 0); ntt(b, false); for(int i = 0; i < n; i++) a[i] *= b[i]; ntt(a, true); a.resize(sz); return a; } }; //#include "poly/NTTmint.cpp" //#include "modint/MontgomeryModInt.cpp" struct mulConvolution { const int P, root; vector<int> powR, logR; int primitiveRoot(int p) { vector<int> pf; { int tmp = p - 1; for(int i = 2; i * i <= (p - 1); i++) { if (tmp % i != 0) continue; pf.emplace_back(i); while(tmp % i == 0) tmp /= i; } if (tmp != 1) pf.emplace_back(tmp); } auto modPow = [p](ll a, int x) -> int { if (x == 0) return 1; if (a == 0) return 0; ll b = 1; while(x) { if (x & 1) b = b * a % p; a = a * a % p, x >>= 1; } return b; }; for(int r = 1; ; r++) { bool isRoot = true; for(int d : pf) { if (modPow(r, (p - 1) / d) == 1) { isRoot = false; break; } } if (isRoot) return r; } } mulConvolution(int _P) : P(_P), root(primitiveRoot(_P)), powR(P - 1), logR(P, -1) { for(int i = 0, tmp = 1; i < P - 1; i++, tmp = (ll)tmp * root % P) powR[i] = tmp, logR[tmp] = i; } template<class Mint> vector<Mint> transform(vector<Mint> &f) { assert(ssize(f) == P); vector<Mint> g(P - 1); for(int i = 1; i < P; i++) g[logR[i]] = f[i]; return g; } template<class Mint> vector<Mint> invTransform(vector<Mint> &f) { assert(ssize(f) == P - 1); vector<Mint> g(P); for(int i = 0; i < P - 1; i++) g[powR[i]] = f[i]; return g; } template<class Mint> vector<Mint> mulConv(vector<Mint> a, vector<Mint> b, vector<Mint>(*conv)(vector<Mint>, vector<Mint>)) { Mint zero = accumulate(a.begin(), a.end(), mint(0)) * b[0] + accumulate(b.begin() + 1, b.end(), mint(0)) * a[0]; a = transform(a), b = transform(b); a = conv(a, b); for(int i = P - 1; i < 2 * P - 3; i++) a[i - (P - 1)] += a[i]; a.resize(P - 1); a = invTransform(a); a[0] = zero; return a; } }; int p; int fac[200000], facInv[200000]; int C(int a, int b) { if (b > a or b < 0) return 0; else return (ll)fac[a] * facInv[b] % p * facInv[a - b] % p; } NTT ntt; signed main() { ios::sync_with_stdio(false), cin.tie(NULL); ll n; cin >> n >> p; fac[0] = 1; for(int i = 1; i < p; i++) fac[i] = (ll)fac[i - 1] * i % p; facInv[p - 1] = 1; for(int i = 0; i < p - 2; i++) facInv[p - 1] = (ll)facInv[p - 1] * fac[p - 1] % p; for(int i = p - 2; i >= 0; i--) facInv[i] = (ll)facInv[i + 1] * (i + 1) % p; mulConvolution mu(p); vector<mint> f(p); f[1] = 1; while(n) { int nd = n % p; n /= p; vector<mint> g(p); for(int i = 0; i < p; i++) g[C(nd, i)] += 1; f = mu.mulConv(f, g, ntt.conv); } mint ans = 0; for(int i = 1; i < p; i++) ans += f[i] * i; cout << ans << '\n'; return 0; }