結果

問題 No.2617 容量3のナップザック
ユーザー risujirohrisujiroh
提出日時 2024-01-26 22:49:29
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 502 ms / 2,000 ms
コード長 7,475 bytes
コンパイル時間 3,259 ms
コンパイル使用メモリ 284,408 KB
実行使用メモリ 42,728 KB
最終ジャッジ日時 2024-09-28 08:42:57
合計ジャッジ時間 12,724 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 1 ms
5,376 KB
testcase_07 AC 1 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 1 ms
5,376 KB
testcase_12 AC 354 ms
28,028 KB
testcase_13 AC 306 ms
38,392 KB
testcase_14 AC 353 ms
29,280 KB
testcase_15 AC 218 ms
25,020 KB
testcase_16 AC 240 ms
21,852 KB
testcase_17 AC 338 ms
26,652 KB
testcase_18 AC 308 ms
28,420 KB
testcase_19 AC 32 ms
6,784 KB
testcase_20 AC 290 ms
33,560 KB
testcase_21 AC 176 ms
15,956 KB
testcase_22 AC 332 ms
39,148 KB
testcase_23 AC 415 ms
37,156 KB
testcase_24 AC 18 ms
5,376 KB
testcase_25 AC 135 ms
24,132 KB
testcase_26 AC 239 ms
22,792 KB
testcase_27 AC 128 ms
13,152 KB
testcase_28 AC 13 ms
5,376 KB
testcase_29 AC 82 ms
15,028 KB
testcase_30 AC 302 ms
31,592 KB
testcase_31 AC 341 ms
26,040 KB
testcase_32 AC 295 ms
35,564 KB
testcase_33 AC 443 ms
39,148 KB
testcase_34 AC 483 ms
39,148 KB
testcase_35 AC 427 ms
38,252 KB
testcase_36 AC 457 ms
39,144 KB
testcase_37 AC 502 ms
39,148 KB
testcase_38 AC 348 ms
39,272 KB
testcase_39 AC 252 ms
34,796 KB
testcase_40 AC 442 ms
39,148 KB
testcase_41 AC 146 ms
42,728 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#if __INCLUDE_LEVEL__ == 0

#include __BASE_FILE__

namespace {

void solve() {
  int n, k;
  scan(n, k);
  std::vector<i64> w(n);
  std::vector<i64> v(n);
  {
    i64 seed, a, b, m;
    scan(seed, a, b, m);
    std::vector<i64> f(n * 2);
    f[0] = seed;
    for (const int i : rep(1, n * 2)) {
      f[i] = f[i - 1] * a + b;
      f[i] %= m;
    }
    for (const int i : rep(n)) {
      w[i] = f[i] % 3 + 1;
      v[i] = f[i + n] * w[i];
    }
  }
  std::vector<std::vector<i64>> vs(4);
  for (const int i : rep(n)) {
    vs[w[i]].push_back(v[i]);
  }
  for (auto& e : vs) {
    ranges::sort(e, std::greater{});
  }
  i64 ans = 0;
  for (const int r : rep(3)) {
    std::array<i64, 4> s{};
    auto keys = vs[3];
    keys.push_back(0);
    for (int i = r; i < len(vs[1]); i += 3) {
      i64 tmp = vs[1][i];
      if (i + 1 < len(vs[1])) {
        tmp += vs[1][i + 1];
      }
      if (i + 2 < len(vs[1])) {
        tmp += vs[1][i + 2];
      }
      keys.push_back(tmp);
    }
    ranges::sort(keys);
    std::apply(LIFT(keys.erase), ranges::unique(keys));
    atcoder::fenwick_tree<int> f0(len(keys));
    atcoder::fenwick_tree<i64> f1(len(keys));
    const auto add = [&](i64 x) {
      const int i = static_cast<int>(ranges::lower_bound(keys, x) - keys.begin());
      f0.add(i, 1);
      f1.add(i, x);
    };
    const auto rm = [&](i64 x) {
      const int i = static_cast<int>(ranges::lower_bound(keys, x) - keys.begin());
      f0.add(i, -1);
      f1.add(i, -x);
    };
    const auto go = [&](int k) {
      int ng = -1;
      int ok = len(keys);
      while (ng + 1 < ok) {
        const int mid = std::midpoint(ng, ok);
        (f0.sum(mid, len(keys)) <= k ? ok : ng) = mid;
      }
      i64 ret = f1.sum(ok, len(keys));
      if (ok) {
        ret += keys[ok - 1] * std::min(f0.sum(ok - 1, ok), k - f0.sum(ok, len(keys)));
      }
      return ret;
    };
    for (const i64 e : vs[3]) {
      add(e);
    }
    for (int i = r; i < len(vs[1]); i += 3) {
      i64 tmp = vs[1][i];
      if (i + 1 < len(vs[1])) {
        tmp += vs[1][i + 1];
      }
      if (i + 2 < len(vs[1])) {
        tmp += vs[1][i + 2];
      }
      add(tmp);
    }
    for (int c2 = r; c2 <= std::min(len(vs[2]), k); c2 += 3) {
      for (const int c : rep(std::max(c2 - 3, 0), c2)) {
        if (c < len(vs[2])) {
          s[2] += vs[2][c];
        }
        if (c < len(vs[1])) {
          s[1] += vs[1][c];
        }
      }
      i64 cur = s[1] + s[2];
      cur += go(k - c2);
      chmax(ans, cur);
      if (const int i = c2; i < len(vs[1])) {
        i64 tmp = vs[1][i];
        if (i + 1 < len(vs[1])) {
          tmp += vs[1][i + 1];
        }
        if (i + 2 < len(vs[1])) {
          tmp += vs[1][i + 2];
        }
        rm(tmp);
      }
    }
  }
  print(ans);
}

// c3+c2+ceil(max(c1-c2,0)/3) <= k

}  // namespace

int main() {
  std::ios::sync_with_stdio(false);
  std::cin.tie(nullptr);

  solve();
}

#else  // __INCLUDE_LEVEL__

#include <bits/stdc++.h>

#include <atcoder/fenwicktree>

template <class T, class U = T>
bool chmin(T& x, U&& y) {
  return y < x && (x = std::forward<U>(y), true);
}

template <class T, class U = T>
bool chmax(T& x, U&& y) {
  return x < y && (x = std::forward<U>(y), true);
}

template <std::signed_integral T = int>
T inf() {
  T ret;
  std::memset(&ret, 0x3f, sizeof(ret));
  return ret;
}

template <std::floating_point T>
T inf() {
  return std::numeric_limits<T>::infinity();
}

template <class T>
concept Range = std::ranges::range<T> && !std::convertible_to<T, std::string_view>;

template <class T>
concept Tuple = std::__is_tuple_like<T>::value && !Range<T>;

namespace std {

istream& operator>>(istream& is, Range auto&& r) {
  for (auto&& e : r) {
    is >> e;
  }
  return is;
}

istream& operator>>(istream& is, Tuple auto&& t) {
  return apply([&](auto&... xs) -> istream& { return (is >> ... >> xs); }, t);
}

ostream& operator<<(ostream& os, Range auto&& r) {
  for (string_view sep = ""; auto&& e : r) {
    os << exchange(sep, " ") << e;
  }
  return os;
}

ostream& operator<<(ostream& os, Tuple auto&& t) {
  const auto f = [&](auto&... xs) -> ostream& {
    [[maybe_unused]] string_view sep = "";
    ((os << exchange(sep, " ") << xs), ...);
    return os;
  };
  return apply(f, t);
}

}  // namespace std

#define DEF_INC_OR_DEC(op) \
  auto& operator op(Range auto&& r) { \
    for (auto&& e : r) { \
      op e; \
    } \
    return r; \
  } \
  auto& operator op(Tuple auto&& t) { \
    std::apply([](auto&... xs) { (op xs, ...); }, t); \
    return t; \
  }

DEF_INC_OR_DEC(++)
DEF_INC_OR_DEC(--)

#undef DEF_INC_OR_DEC

void scan(auto&&... xs) { std::cin >> std::tie(xs...); }
void print(auto&&... xs) { std::cout << std::tie(xs...) << '\n'; }

#define FWD(...) static_cast<decltype(__VA_ARGS__)&&>(__VA_ARGS__)

#define LIFT(...) [&](auto&&... xs) -> decltype(auto) { return (__VA_ARGS__)(FWD(xs)...); }

template <class F>
class fix {
 public:
  explicit fix(F f) : f_(std::move(f)) {}

  decltype(auto) operator()(auto&&... xs) const { return f_(std::ref(*this), FWD(xs)...); }

 private:
  F f_;
};

template <class T>
concept LambdaExpr = std::is_placeholder_v<std::remove_cvref_t<T>> != 0 ||
                     std::is_bind_expression_v<std::remove_cvref_t<T>>;

auto operator++(LambdaExpr auto&& x, int) {
  return std::bind([](auto&& x) -> decltype(auto) { return FWD(x)++; }, FWD(x));
}

auto operator--(LambdaExpr auto&& x, int) {
  return std::bind([](auto&& x) -> decltype(auto) { return FWD(x)--; }, FWD(x));
}

#define DEF_UNARY_OP(op) \
  auto operator op(LambdaExpr auto&& x) { \
    return std::bind([](auto&& x) -> decltype(auto) { return op FWD(x); }, FWD(x)); \
  }

DEF_UNARY_OP(++)
DEF_UNARY_OP(--)
DEF_UNARY_OP(+)
DEF_UNARY_OP(-)
DEF_UNARY_OP(~)
DEF_UNARY_OP(!)
DEF_UNARY_OP(*)
DEF_UNARY_OP(&)

#undef DEF_UNARY_OP

#define DEF_BINARY_OP(op) \
  template <class T1, class T2> \
    requires LambdaExpr<T1> || LambdaExpr<T2> \
  auto operator op(T1&& x, T2&& y) { \
    return std::bind([](auto&& x, auto&& y) -> decltype(auto) { return FWD(x) op FWD(y); }, \
                     FWD(x), FWD(y)); \
  }

DEF_BINARY_OP(+=)
DEF_BINARY_OP(-=)
DEF_BINARY_OP(*=)
DEF_BINARY_OP(/=)
DEF_BINARY_OP(%=)
DEF_BINARY_OP(^=)
DEF_BINARY_OP(&=)
DEF_BINARY_OP(|=)
DEF_BINARY_OP(<<=)
DEF_BINARY_OP(>>=)
DEF_BINARY_OP(+)
DEF_BINARY_OP(-)
DEF_BINARY_OP(*)
DEF_BINARY_OP(/)
DEF_BINARY_OP(%)
DEF_BINARY_OP(^)
DEF_BINARY_OP(&)
DEF_BINARY_OP(|)
DEF_BINARY_OP(<<)
DEF_BINARY_OP(>>)
DEF_BINARY_OP(==)
DEF_BINARY_OP(!=)
DEF_BINARY_OP(<)
DEF_BINARY_OP(>)
DEF_BINARY_OP(<=)
DEF_BINARY_OP(>=)
DEF_BINARY_OP(&&)
DEF_BINARY_OP(||)

#undef DEF_BINARY_OP

template <class T1, class T2>
  requires LambdaExpr<T1> || LambdaExpr<T2>
auto at(T1&& x, T2&& y) {
  return std::bind([](auto&& x, auto&& y) -> decltype(auto) { return FWD(x)[FWD(y)]; }, FWD(x),
                   FWD(y));
}

template <int I>
auto get(LambdaExpr auto&& x) {
  return std::bind([](auto&& x) -> decltype(auto) { return std::get<I>(FWD(x)); }, FWD(x));
}

inline auto rep(int l, int r) { return std::views::iota(std::min(l, r), r); }
inline auto rep(int n) { return rep(0, n); }
inline auto rep1(int l, int r) { return rep(l, r + 1); }
inline auto rep1(int n) { return rep(1, n + 1); }

using namespace std::literals;
using namespace std::placeholders;

namespace ranges = std::ranges;
namespace views = std::views;

using i64 = std::int64_t;

#define len(...) static_cast<int>(ranges::size(__VA_ARGS__))

#endif  // __INCLUDE_LEVEL__
0