結果
問題 | No.2620 Sieve of Coins |
ユーザー | hitonanode |
提出日時 | 2024-01-26 23:02:26 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 83 ms / 2,000 ms |
コード長 | 17,779 bytes |
コンパイル時間 | 2,348 ms |
コンパイル使用メモリ | 199,960 KB |
実行使用メモリ | 29,968 KB |
最終ジャッジ日時 | 2024-09-28 08:51:41 |
合計ジャッジ時間 | 7,791 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 31 ms
29,168 KB |
testcase_01 | AC | 31 ms
28,604 KB |
testcase_02 | AC | 31 ms
29,968 KB |
testcase_03 | AC | 81 ms
28,648 KB |
testcase_04 | AC | 82 ms
28,332 KB |
testcase_05 | AC | 32 ms
28,212 KB |
testcase_06 | AC | 32 ms
28,340 KB |
testcase_07 | AC | 32 ms
28,340 KB |
testcase_08 | AC | 31 ms
28,208 KB |
testcase_09 | AC | 31 ms
28,336 KB |
testcase_10 | AC | 31 ms
28,336 KB |
testcase_11 | AC | 31 ms
28,340 KB |
testcase_12 | AC | 31 ms
28,212 KB |
testcase_13 | AC | 31 ms
28,336 KB |
testcase_14 | AC | 31 ms
28,344 KB |
testcase_15 | AC | 30 ms
28,336 KB |
testcase_16 | AC | 31 ms
28,340 KB |
testcase_17 | AC | 34 ms
28,336 KB |
testcase_18 | AC | 80 ms
28,208 KB |
testcase_19 | AC | 81 ms
28,340 KB |
testcase_20 | AC | 31 ms
28,336 KB |
testcase_21 | AC | 81 ms
28,340 KB |
testcase_22 | AC | 81 ms
28,332 KB |
testcase_23 | AC | 83 ms
28,212 KB |
testcase_24 | AC | 81 ms
28,340 KB |
testcase_25 | AC | 83 ms
28,340 KB |
testcase_26 | AC | 82 ms
28,264 KB |
testcase_27 | AC | 81 ms
28,336 KB |
testcase_28 | AC | 31 ms
28,208 KB |
testcase_29 | AC | 31 ms
28,332 KB |
testcase_30 | AC | 31 ms
28,332 KB |
testcase_31 | AC | 81 ms
28,340 KB |
testcase_32 | AC | 81 ms
28,332 KB |
testcase_33 | AC | 81 ms
28,336 KB |
testcase_34 | AC | 81 ms
28,336 KB |
testcase_35 | AC | 82 ms
28,336 KB |
testcase_36 | AC | 83 ms
28,336 KB |
testcase_37 | AC | 81 ms
28,212 KB |
testcase_38 | AC | 83 ms
28,332 KB |
testcase_39 | AC | 81 ms
28,336 KB |
testcase_40 | AC | 82 ms
28,340 KB |
testcase_41 | AC | 83 ms
28,336 KB |
testcase_42 | AC | 81 ms
28,208 KB |
testcase_43 | AC | 81 ms
28,336 KB |
testcase_44 | AC | 82 ms
28,336 KB |
testcase_45 | AC | 32 ms
28,212 KB |
testcase_46 | AC | 81 ms
28,340 KB |
testcase_47 | AC | 82 ms
28,336 KB |
testcase_48 | AC | 82 ms
28,332 KB |
testcase_49 | AC | 82 ms
28,208 KB |
testcase_50 | AC | 82 ms
28,472 KB |
testcase_51 | AC | 81 ms
28,376 KB |
testcase_52 | AC | 81 ms
28,216 KB |
testcase_53 | AC | 82 ms
28,340 KB |
testcase_54 | AC | 81 ms
28,244 KB |
testcase_55 | AC | 82 ms
28,340 KB |
testcase_56 | AC | 82 ms
28,212 KB |
testcase_57 | AC | 82 ms
28,216 KB |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <memory> #include <numeric> #include <optional> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); } template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); } template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); } template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec); template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr); template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa); template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa); template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp); template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp); template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl); template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; } template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl #define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr) #else #define dbg(x) ((void)0) #define dbgif(cond, x) ((void)0) #endif #include <cassert> #include <map> #include <vector> // Linear sieve algorithm for fast prime factorization // Complexity: O(N) time, O(N) space: // - MAXN = 10^7: ~44 MB, 80~100 ms (Codeforces / AtCoder GCC, C++17) // - MAXN = 10^8: ~435 MB, 810~980 ms (Codeforces / AtCoder GCC, C++17) // Reference: // [1] D. Gries, J. Misra, "A Linear Sieve Algorithm for Finding Prime Numbers," // Communications of the ACM, 21(12), 999-1003, 1978. // - https://cp-algorithms.com/algebra/prime-sieve-linear.html // - https://37zigen.com/linear-sieve/ struct Sieve { std::vector<int> min_factor; std::vector<int> primes; Sieve(int MAXN) : min_factor(MAXN + 1) { for (int d = 2; d <= MAXN; d++) { if (!min_factor[d]) { min_factor[d] = d; primes.emplace_back(d); } for (const auto &p : primes) { if (p > min_factor[d] or d * p > MAXN) break; min_factor[d * p] = p; } } } // Prime factorization for 1 <= x <= MAXN^2 // Complexity: O(log x) (x <= MAXN) // O(MAXN / log MAXN) (MAXN < x <= MAXN^2) template <class T> std::map<T, int> factorize(T x) const { std::map<T, int> ret; assert(x > 0 and x <= ((long long)min_factor.size() - 1) * ((long long)min_factor.size() - 1)); for (const auto &p : primes) { if (x < T(min_factor.size())) break; while (!(x % p)) x /= p, ret[p]++; } if (x >= T(min_factor.size())) ret[x]++, x = 1; while (x > 1) ret[min_factor[x]]++, x /= min_factor[x]; return ret; } // Enumerate divisors of 1 <= x <= MAXN^2 // Be careful of highly composite numbers https://oeis.org/A002182/list // https://gist.github.com/dario2994/fb4713f252ca86c1254d#file-list-txt (n, (# of div. of n)): // 45360->100, 735134400(<1e9)->1344, 963761198400(<1e12)->6720 template <class T> std::vector<T> divisors(T x) const { std::vector<T> ret{1}; for (const auto p : factorize(x)) { int n = ret.size(); for (int i = 0; i < n; i++) { for (T a = 1, d = 1; d <= p.second; d++) { a *= p.first; ret.push_back(ret[i] * a); } } } return ret; // NOT sorted } // Euler phi functions of divisors of given x // Verified: ABC212 G https://atcoder.jp/contests/abc212/tasks/abc212_g // Complexity: O(sqrt(x) + d(x)) template <class T> std::map<T, T> euler_of_divisors(T x) const { assert(x >= 1); std::map<T, T> ret; ret[1] = 1; std::vector<T> divs{1}; for (auto p : factorize(x)) { int n = ret.size(); for (int i = 0; i < n; i++) { ret[divs[i] * p.first] = ret[divs[i]] * (p.first - 1); divs.push_back(divs[i] * p.first); for (T a = divs[i] * p.first, d = 1; d < p.second; a *= p.first, d++) { ret[a * p.first] = ret[a] * p.first; divs.push_back(a * p.first); } } } return ret; } // Moebius function Table, (-1)^{# of different prime factors} for square-free x // return: [0=>0, 1=>1, 2=>-1, 3=>-1, 4=>0, 5=>-1, 6=>1, 7=>-1, 8=>0, ...] https://oeis.org/A008683 std::vector<int> GenerateMoebiusFunctionTable() const { std::vector<int> ret(min_factor.size()); for (unsigned i = 1; i < min_factor.size(); i++) { if (i == 1) { ret[i] = 1; } else if ((i / min_factor[i]) % min_factor[i] == 0) { ret[i] = 0; } else { ret[i] = -ret[i / min_factor[i]]; } } return ret; } // Calculate [0^K, 1^K, ..., nmax^K] in O(nmax) // Note: **0^0 == 1** template <class MODINT> std::vector<MODINT> enumerate_kth_pows(long long K, int nmax) const { assert(nmax < int(min_factor.size())); assert(K >= 0); if (K == 0) return std::vector<MODINT>(nmax + 1, 1); std::vector<MODINT> ret(nmax + 1); ret[0] = 0, ret[1] = 1; for (int n = 2; n <= nmax; n++) { if (min_factor[n] == n) { ret[n] = MODINT(n).pow(K); } else { ret[n] = ret[n / min_factor[n]] * ret[min_factor[n]]; } } return ret; } }; Sieve sieve((1 << 20)); struct CountPrimes { // Count Primes less than or equal to x (\pi(x)) for each x = N / i (i = 1, ..., N) in O(N^(2/3)) time // Learned this algorihtm from https://old.yosupo.jp/submission/14650 // Reference: https://min-25.hatenablog.com/entry/2018/11/11/172216 using Int = long long; Int n, n2, n3, n6; std::vector<int> is_prime; // [0, 0, 1, 1, 0, 1, 0, 1, ...] std::vector<Int> primes; // primes up to O(N^(1/2)), [2, 3, 5, 7, ...] int s; // size of vs std::vector<Int> vs; // [N, ..., n2, n2 - 1, n2 - 2, ..., 3, 2, 1] std::vector<Int> pi; // pi[i] = (# of primes s.t. <= vs[i]) is finally obtained std::vector<int> _fenwick; int getidx(Int a) const { return a <= n2 ? s - a : n / a - 1; } // vs[i] >= a を満たす最大の i を返す void _fenwick_rec_update( int i, Int cur, bool first) { // pi[n3:] に対して cur * (primes[i] 以上の素因数) の数の寄与を減じる if (!first) { for (int x = getidx(cur) - n3; x >= 0; x -= (x + 1) & (-x - 1)) _fenwick[x]--; } for (int j = i; cur * primes[j] <= vs[n3]; j++) _fenwick_rec_update(j, cur * primes[j], false); } CountPrimes(Int n_) : n(n_), n2((Int)sqrtl(n)), n3((Int)cbrtl(n)), n6((Int)sqrtl(n3)) { is_prime.assign(n2 + 300, 1), is_prime[0] = is_prime[1] = 0; // `+ 300`: https://en.wikipedia.org/wiki/Prime_gap for (size_t p = 2; p < is_prime.size(); p++) { if (is_prime[p]) { primes.push_back(p); for (size_t j = p * 2; j < is_prime.size(); j += p) is_prime[j] = 0; } } for (Int now = n; now; now = n / (n / now + 1)) vs.push_back( now); // [N, N / 2, ..., 1], Relevant integers (decreasing) length ~= 2sqrt(N) s = vs.size(); // pi[i] = (# of integers x s.t. x <= vs[i], (x is prime or all factors of x >= p)) // pre = (# of primes less than p) // 最小の素因数 p = 2, ..., について篩っていく pi.resize(s); for (int i = 0; i < s; i++) pi[i] = vs[i] - 1; int pre = 0; auto trans = [&](int i, Int p) { pi[i] -= pi[getidx(vs[i] / p)] - pre; }; size_t ip = 0; // [Sieve Part 1] For each prime p satisfying p <= N^(1/6) (Only O(N^(1/6) / log N) such primes exist), // O(sqrt(N)) simple operation is conducted. // - Complexity of this part: O(N^(2/3) / logN) for (; primes[ip] <= n6; ip++, pre++) { const auto &p = primes[ip]; for (int i = 0; p * p <= vs[i]; i++) trans(i, p); } // [Sieve Part 2] For each prime p satisfying N^(1/6) < p <= N^(1/3), // point-wise & Fenwick tree-based hybrid update is used // - first N^(1/3) elements are simply updated by quadratic algorithm. // - Updates of latter segments are managed by Fenwick tree. // - Complexity of this part: O(N^(2/3)) (O(N^(2/3)/log N) operations for Fenwick tree (O(logN) per query)) _fenwick.assign(s - n3, 0); // Fenwick tree, inversed order (summation for upper region) auto trans2 = [&](int i, Int p) { int j = getidx(vs[i] / p); auto z = pi[j]; if (j >= n3) { for (j -= n3; j < int(_fenwick.size()); j += (j + 1) & (-j - 1)) z += _fenwick[j]; } pi[i] -= z - pre; }; for (; primes[ip] <= n3; ip++, pre++) { const auto &p = primes[ip]; for (int i = 0; i < n3 and p * p <= vs[i]; i++) trans2(i, p); // upto n3, total trans2 times: O(N^(2/3) / logN) _fenwick_rec_update(ip, primes[ip], true); // total update times: O(N^(2/3) / logN) } for (int i = s - n3 - 1; i >= 0; i--) { int j = i + ((i + 1) & (-i - 1)); if (j < s - n3) _fenwick[i] += _fenwick[j]; } for (int i = 0; i < s - n3; i++) pi[i + n3] += _fenwick[i]; // [Sieve Part 3] For each prime p satisfying N^(1/3) < p <= N^(1/2), use only simple updates. // - Complexity of this part: O(N^(2/3) / logN) // \sum_i (# of factors of vs[i] of the form p^2, p >= N^(1/3)) = \sum_{i=1}^{N^(1/3)} \pi(\sqrt(vs[i]))) // = sqrt(N) \sum_i^{N^(1/3)} // i^{-1/2} / logN = O(N^(2/3) / logN) // (Note: \sum_{i=1}^{N} i^{-1/2} = O(sqrt N) // https://math.stackexchange.com/questions/2600796/finding-summation-of-inverse-of-square-roots ) for (; primes[ip] <= n2; ip++, pre++) { const auto &p = primes[ip]; for (int i = 0; p * p <= vs[i]; i++) trans(i, p); } } }; void expe(int n) { vector<int> dp(n + 1); dp.at(1) = 1; FOR(i, 1, dp.size()) { if (dp.at(i)) { dbg(sieve.factorize(i)); for (int j = i * 2; j <= n; j += i) dp.at(j) ^= 1; } } dbg(dp); } int main() { // expe(211); lint L; int N; cin >> L >> N; auto moebius = sieve.GenerateMoebiusFunctionTable(); vector<plint> nonzeros; FOR(i, 1, moebius.size()) { if (moebius.at(i)) nonzeros.emplace_back(i, moebius.at(i)); } auto f = [&](lint x) { lint ret = 0; for (auto [d, m] : nonzeros) { if (d * d > x) break; ret += m * (x / (d * d)); } return ret; }; vector<lint> A(N); cin >> A; int D3 = 2; { lint tmp = L; while (tmp) { ++D3; tmp /= 3; } } const int D2 = floor_lg(L) + 2; vector dp(D2, vector<lint>(D3)); IREP(i, D2) IREP(j, D3) { if (i + 1 < D2) dp.at(i).at(j) -= dp.at(i + 1).at(j); if (j + 1 < D3) dp.at(i).at(j) -= dp.at(i).at(j + 1); if (i + 1 < D2 and j + 1 < D3) dp.at(i).at(j) -= dp.at(i + 1).at(j + 1); lint base = 1LL << i; REP(_, j) base *= 3; dp.at(i).at(j) += f(L / base); dbgif(L <= 100, make_tuple(i, j, L / base, dp.at(i).at(j))); } vector acnt(D2, vector<int>(D3)); for (lint a : A) { int n2 = 0, n3 = 0; while (a % 2 == 0) a /= 2, n2++; while (a % 3 == 0) a /= 3, n3++; REP(d, 2) REP(e, 2) acnt.at(n2 + d).at(n3 + e) ^= 1; } lint ret = 0; REP(n2, D2) REP(n3, D3) { if (!acnt.at(n2).at(n3)) continue; ret += dp.at(n2).at(n3); } cout << ret << '\n'; }