結果

問題 No.2616 中央番目の中央値
ユーザー nikoro256nikoro256
提出日時 2024-01-26 23:37:42
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 5,613 bytes
コンパイル時間 558 ms
コンパイル使用メモリ 82,048 KB
実行使用メモリ 262,800 KB
最終ジャッジ日時 2024-09-28 09:10:14
合計ジャッジ時間 32,658 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 157 ms
160,640 KB
testcase_01 AC 157 ms
160,600 KB
testcase_02 AC 158 ms
160,544 KB
testcase_03 AC 158 ms
160,640 KB
testcase_04 AC 156 ms
160,256 KB
testcase_05 AC 161 ms
160,640 KB
testcase_06 AC 164 ms
160,640 KB
testcase_07 AC 160 ms
160,896 KB
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional
T = TypeVar('T')

class SortedSet(Generic[T]):
    BUCKET_RATIO = 50
    REBUILD_RATIO = 170

    def _build(self, a: Optional[List[T]] = None) -> None:
        "Evenly divide `a` into buckets."
        if a is None: a = list(self)
        size = len(a)
        bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
        self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]
    
    def __init__(self, a: Iterable[T] = []) -> None:
        "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
        a = list(a)
        self.size = len(a)
        if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):
            a = sorted(set(a))
        self._build(a)

    def __iter__(self) -> Iterator[T]:
        for i in self.a:
            for j in i: yield j

    def __reversed__(self) -> Iterator[T]:
        for i in reversed(self.a):
            for j in reversed(i): yield j
    
    def __eq__(self, other) -> bool:
        return list(self) == list(other)
    
    def __len__(self) -> int:
        return self.size
    
    def __repr__(self) -> str:
        return "SortedSet" + str(self.a)
    
    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1 : len(s) - 1] + "}"

    def _position(self, x: T) -> Tuple[List[T], int]:
        "Find the bucket and position which x should be inserted. self must not be empty."
        for a in self.a:
            if x <= a[-1]: break
        return (a, bisect_left(a, x))

    def __contains__(self, x: T) -> bool:
        if self.size == 0: return False
        a, i = self._position(x)
        return i != len(a) and a[i] == x

    def add(self, x: T) -> bool:
        "Add an element and return True if added. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return True
        a, i = self._position(x)
        if i != len(a) and a[i] == x: return False
        a.insert(i, x)
        self.size += 1
        if len(a) > len(self.a) * self.REBUILD_RATIO:
            self._build()
        return True
    
    def _pop(self, a: List[T], i: int) -> T:
        ans = a.pop(i)
        self.size -= 1
        if not a: self._build()
        return ans

    def discard(self, x: T) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0: return False
        a, i = self._position(x)
        if i == len(a) or a[i] != x: return False
        self._pop(a, i)
        return True
    
    def lt(self, x: T) -> Optional[T]:
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]

    def le(self, x: T) -> Optional[T]:
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]

    def gt(self, x: T) -> Optional[T]:
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]

    def ge(self, x: T) -> Optional[T]:
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]
    
    def __getitem__(self, i: int) -> T:
        "Return the i-th element."
        if i < 0:
            for a in reversed(self.a):
                i += len(a)
                if i >= 0: return a[i]
        else:
            for a in self.a:
                if i < len(a): return a[i]
                i -= len(a)
        raise IndexError
    
    def pop(self, i: int = -1) -> T:
        "Pop and return the i-th element."
        if i < 0:
            for a in reversed(self.a):
                i += len(a)
                if i >= 0: return self._pop(a, i)
        else:
            for a in self.a:
                if i < len(a): return self._pop(a, i)
                i -= len(a)
        raise IndexError
    
    def index(self, x: T) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans

    def index_right(self, x: T) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans

def cmb(n, r, p):
    if (r < 0) or (n < r):
        return 0
    r = min(r, n - r)
    return fact[n] * factinv[r] * factinv[n-r] % p

p=998244353
N = 4*10**5  # N は必要分だけ用意する
fact = [1, 1]  # fact[n] = (n! mod p)
factinv = [1, 1]  # factinv[n] = ((n!)^(-1) mod p)
inv = [0, 1]  # factinv 計算用S
 
for i in range(2, N + 1):
    fact.append((fact[-1] * i) % p)
    inv.append((-inv[p % i] * (p // i)) % p)
    factinv.append((factinv[-1] * inv[-1]) % p)

N=int(input())
P=list(map(int,input().split()))
st=SortedSet()
st2=SortedSet()
for i in range(N):
    st2.add(P[i])
ans=0
p=998244353
for i in range(N):
    lt=st.index(P[i])
    gt=i-lt
    lt2=st2.index(P[i])
    gt2=N-1-i-lt2
    ans+=cmb(lt+gt2,min(lt,gt2),p)*cmb(lt2+gt,min(gt,lt2),p)
    st.add(P[i])
    st2.discard(P[i])
print(ans)
0