結果
| 問題 |
No.2616 中央番目の中央値
|
| コンテスト | |
| ユーザー |
nikoro256
|
| 提出日時 | 2024-01-26 23:38:19 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 1,669 ms / 2,000 ms |
| コード長 | 5,624 bytes |
| コンパイル時間 | 399 ms |
| コンパイル使用メモリ | 82,552 KB |
| 実行使用メモリ | 262,700 KB |
| 最終ジャッジ日時 | 2024-09-28 09:10:48 |
| 合計ジャッジ時間 | 32,771 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 37 |
ソースコード
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional
T = TypeVar('T')
class SortedSet(Generic[T]):
BUCKET_RATIO = 50
REBUILD_RATIO = 170
def _build(self, a: Optional[List[T]] = None) -> None:
"Evenly divide `a` into buckets."
if a is None: a = list(self)
size = len(a)
bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
a = list(a)
self.size = len(a)
if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):
a = sorted(set(a))
self._build(a)
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __eq__(self, other) -> bool:
return list(self) == list(other)
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedSet" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1 : len(s) - 1] + "}"
def _position(self, x: T) -> Tuple[List[T], int]:
"Find the bucket and position which x should be inserted. self must not be empty."
for a in self.a:
if x <= a[-1]: break
return (a, bisect_left(a, x))
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a, i = self._position(x)
return i != len(a) and a[i] == x
def add(self, x: T) -> bool:
"Add an element and return True if added. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return True
a, i = self._position(x)
if i != len(a) and a[i] == x: return False
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.REBUILD_RATIO:
self._build()
return True
def _pop(self, a: List[T], i: int) -> T:
ans = a.pop(i)
self.size -= 1
if not a: self._build()
return ans
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a, i = self._position(x)
if i == len(a) or a[i] != x: return False
self._pop(a, i)
return True
def lt(self, x: T) -> Optional[T]:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Optional[T]:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Optional[T]:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Optional[T]:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, i: int) -> T:
"Return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0: return a[i]
else:
for a in self.a:
if i < len(a): return a[i]
i -= len(a)
raise IndexError
def pop(self, i: int = -1) -> T:
"Pop and return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0: return self._pop(a, i)
else:
for a in self.a:
if i < len(a): return self._pop(a, i)
i -= len(a)
raise IndexError
def index(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
def cmb(n, r, p):
if (r < 0) or (n < r):
return 0
r = min(r, n - r)
return fact[n] * factinv[r] * factinv[n-r] % p
p=998244353
N = 4*10**5 # N は必要分だけ用意する
fact = [1, 1] # fact[n] = (n! mod p)
factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p)
inv = [0, 1] # factinv 計算用S
for i in range(2, N + 1):
fact.append((fact[-1] * i) % p)
inv.append((-inv[p % i] * (p // i)) % p)
factinv.append((factinv[-1] * inv[-1]) % p)
N=int(input())
P=list(map(int,input().split()))
st=SortedSet()
st2=SortedSet()
for i in range(N):
st2.add(P[i])
ans=0
p=998244353
for i in range(N):
lt=st.index(P[i])
gt=i-lt
lt2=st2.index(P[i])
gt2=N-1-i-lt2
ans+=cmb(lt+gt2,min(lt,gt2),p)*cmb(lt2+gt,min(gt,lt2),p)
ans%=p
st.add(P[i])
st2.discard(P[i])
print(ans)
nikoro256