結果

問題 No.2443 特殊線形群の標準表現
ユーザー 👑 p-adicp-adic
提出日時 2024-01-27 14:10:37
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 131 ms / 3,000 ms
コード長 56,693 bytes
コンパイル時間 3,732 ms
コンパイル使用メモリ 238,324 KB
実行使用メモリ 12,588 KB
最終ジャッジ日時 2024-09-28 09:37:37
合計ジャッジ時間 6,577 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 1 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 1 ms
5,376 KB
testcase_13 AC 3 ms
5,376 KB
testcase_14 AC 14 ms
5,376 KB
testcase_15 AC 131 ms
12,544 KB
testcase_16 AC 124 ms
12,544 KB
testcase_17 AC 126 ms
12,572 KB
testcase_18 AC 122 ms
12,544 KB
testcase_19 AC 119 ms
12,544 KB
testcase_20 AC 104 ms
12,588 KB
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef INCLUDE_MODE
#define INCLUDE_MODE
// #define REACTIVE
// #define USE_GETLINE
#endif
#ifdef INCLUDE_MAIN
#define OO first.first
#define OI first.second
#define IO second.first
#define II second.second
IN VO Solve()
{
CIN( ll , N , B , Q );
using Matrix = T2<T2<ll>>;
vector<Matrix> A( N );
FOR( n , 0 , N ){
CIN( ll , AOO , AOI , AIO , AII );
assert( AOO * AII - AOI * AIO == 1 );
A[n] = { { AOO , AOI } , { AIO , AII } };
}
auto Mult = [&]( const Matrix& M , const Matrix& N ){
return Matrix
(
{ ( M.OO * N.OO + M.OI * N.IO ) % B , ( M.OO * N.OI + M.OI * N.II ) % B } ,
{ ( M.IO * N.OO + M.II * N.IO ) % B , ( M.IO * N.OI + M.II * N.II ) % B }
);
};
const Matrix E2{ { 1 % B , 0 } , { 0 , 1 % B } };
auto Inv = [&]( const Matrix& M ){
return Matrix
(
{ M.II , Residue( -M.OI , B ) } , { Residue( -M.IO , B ) , M.OO }
);
};
AbstractGroup SL2{ Mult , E2 , Inv };
CumulativeProd cp{ A , SL2 };
REPEAT( Q ){
CIN( ll , Lq , Rq , x , y );
Matrix temp = cp.LeftProd( Lq , Rq - 1 );
ll z = Residue( temp.OO * x + temp.OI * y , B );
ll w = Residue( temp.IO * x + temp.II * y , B );
COUT( z , w );
}
}
REPEAT_MAIN(1);
#else // INCLUDE_MAIN
#ifdef INCLUDE_SUB
//
TE <TY T> Map<T,T> gF;
TE <TY T> VE<T> gA;
TE <TY PATH> VE<LI<PATH>> gE;
TE <TY T , TE <TY...> TY V> IN auto Get( CO V<T>& a ) { return [&]( CRI i = 0 ){ RE a[i]; }; }
// COMPARE使
ll Naive( int N , int M , int K )
{
ll answer = N + M + K;
return answer;
}
// COMPARE使
ll Answer( ll N , ll M , ll K )
{
// START_WATCH;
ll answer = N + M + K;
// // TL100.0[ms]
// CEXPR( double , TL , 2000.0 );
// while( CHECK_WATCH( TL ) ){
// }
return answer;
}
//
IN VO Experiment()
{
// CEXPR( int , bound , 10 );
// FOREQ( N , 0 , bound ){
// FOREQ( M , 0 , bound ){
// FOREQ( K , 0 , bound ){
// COUT( N , M , K , ":" , Naive( N , M , K ) );
// }
// }
// // cout << Naive( N ) << ",\n"[N==bound];
// }
}
//
IN VO SmallTest()
{
// CEXPR( int , bound , 10 );
// FOREQ( N , 0 , bound ){
// FOREQ( M , 0 , bound ){
// FOREQ( K , 0 , bound ){
// COMPARE( N , M , K );
// }
// }
// // COMPARE( N );
// }
}
#define INCLUDE_MAIN
#include __FILE__
#else // INCLUDE_SUB
#ifdef INCLUDE_LIBRARY
/*
C-x 3 C-x o C-x C-f
BFS:
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt
CoordinateCompress:
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txt
DFSOnTree
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/a.hpp
Divisor:
c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt
IntervalAddBIT
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/compress.txt
Polynomial
c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt
UnionFind
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/UnionFindForest/compress.txt
*/
// VVV
//
template <typename U>
class VirtualCumulativeProd
{
public:
// 0 <= i,j < m_size
// ipathi=v_0->...->v_k=jSeta
// a[v_0]...a[v_k]
virtual U PathProd( const int& i , const int& j ) = 0;
protected:
virtual int Parent( const int& i ) = 0;
virtual int LCA( const int& i , const int& j ) = 0;
};
template <typename U , typename GROUP>
class PathProdImplementation :
virtual public VirtualCumulativeProd<U>
{
protected:
int m_size;
GROUP m_M;
vector<U> m_right;
vector<U> m_left;
public:
inline PathProdImplementation( const int& size , GROUP M );
inline U PathProd( const int& i , const int& j );
};
//
//
// (1) MU
//
// M.one()O(size)
// O(size)
// O(size)
// O(size)
// O(1)
// O(1)
// O(size log size)
// O(size log size)
template <typename U , typename GROUP>
class CumulativeProd :
public PathProdImplementation<U,GROUP>
{
public:
inline CumulativeProd( const int& size , GROUP M );
template <typename V> inline CumulativeProd( const vector<V>& a , GROUP M );
template <typename V> inline void Set( const vector<V>& a );
// a[i]M.Product(t,a[i])
inline void LeftMultiply( const int& i , const U& t );
// a[i]M.Product(a[i],t)
inline void RightMultiply( const int& i , const U& t );
// 0 <= ii-1 <= j < m_size
// a[i]...a[j]M
inline U RightProd( const int& i , const int& j );
// a[j]...a[i]M
inline U LeftProd( const int& i , const int& j );
// M.Product()使M.Product()M.One()M.Inverse()
// Ma[i]...a[j]t[i,j]
ll CountRightProdInverseImage( const U& t = One() );
// Ma[j]...a[i]t[i,j]
ll CountLeftProdInverseImage( const U& t = One() );
private:
inline int Parent( const int& i );
inline int LCA( const int& i , const int& j );
inline const U& One() const;
};
template <typename GROUP> CumulativeProd( GROUP M ) -> CumulativeProd<inner_t<GROUP>,GROUP>;
template <typename V , typename GROUP> CumulativeProd( const vector<V>& a , GROUP M ) -> CumulativeProd<inner_t<GROUP>,GROUP>;
template <typename U , typename GROUP> inline PathProdImplementation<U,GROUP>::PathProdImplementation( const int& size , GROUP M ) : m_size( size ) ,
    m_M( move( M ) ) , m_right( m_size , m_M.One() ) , m_left( m_right ) {}
template <typename U , typename GROUP> inline CumulativeProd<U,GROUP>::CumulativeProd( const int& size , GROUP M ) : PathProdImplementation<U,GROUP>(
    size , move( M ) ) {}
template <typename U , typename GROUP> template <typename V> inline CumulativeProd<U,GROUP>::CumulativeProd( const vector<V>& a , GROUP M ) :
    CumulativeProd<U,GROUP>( a.size() , move( M ) )
{
static_assert( is_convertible_v<V,U> );
if( !a.empty() ){
this->m_right[0] = this->m_left[0] = a[0];
for( int i = 1 ; i < this->m_size ; i++ ){
this->m_right[i] = this->m_M.Product( this->m_right[i-1] , a[i] );
this->m_left[i] = this->m_M.Product( a[i] , this->m_left[i-1] );
}
}
}
template <typename U , typename GROUP> template <typename V> inline void CumulativeProd<U,GROUP>::Set( const vector<V>& a ) { *this = CumulativeProd(
    a , move( this->m_M ) ); }
template <typename U , typename GROUP> inline void CumulativeProd<U,GROUP>::LeftMultiply( const int& i , const U& t )
{
const U m_right_i_prev_inv = i == 0 ? One() : this->m_M.Inverse( this->m_right[i-1] );
const U m_right_i_prev = i == 0 ? t : this->m_M.Product( this->m_right[i-1] , t );
for( int j = i ; j < this->m_size ; j++ ){
this->m_right[j] = this->m_M.Product( m_right_i_prev , this->m_M.Product( m_right_i_prev_inv , this->m_right[j] ) );
}
const U m_left_i_inv = this->m_M.Inverse( this->m_left[i] );
const U& m_left_i = this->m_left[i] = this->m_M.Product( t , this->m_left[i] );
for( int j = i + 1 ; j < this->m_size ; j++ ){
this->m_left[j] = this->m_M.Product( this->m_M.Product( this->m_left[j] , m_left_i_inv ) , m_left_i );
}
}
template <typename U , typename GROUP> inline void CumulativeProd<U,GROUP>::RightMultiply( const int& i , const U& t )
{
const U m_right_i_inv = this->m_M.Inverse( this->m_right[i] );
const U& m_right_i = this->m_right[i] = this->m_M.Product( this->m_right[i] , t );
for( int j = i + 1 ; j < this->m_size ; j++ ){
this->m_right[j] = this->m_M.Product( m_right_i , this->m_M.Product( m_right_i_inv , this->m_right[j] ) );
}
const U m_left_i_prev_inv = i == this->m_size - 1 ? One() : this->m_M.Inverse( this->m_left[i-1] );
const U m_left_i_prev = this->m_M.Product( t , this->m_left[i-1] );
for( int j = i + 1 ; j < this->m_size ; j++ ){
this->m_left[j] = this->m_M.Product( this->m_M.Product( this->m_left[j] , m_left_i_prev_inv ) , m_left_i_prev );
}
}
template <typename U , typename GROUP> inline U PathProdImplementation<U,GROUP>::PathProd( const int& i , const int& j ) { assert( 0 <= i && i <
    m_size && 0 <= j && j < m_size ); const int k = this->LCA( i , j ); return m_M.Product( m_M.Product( m_left[i] , m_M.Inverse( m_left[k] ) ) , k
    == 0 ? m_right[j] : m_M.Product( m_M.Inverse( m_right[this->Parent( k ) ] ) , m_right[j] )); }
template <typename U , typename GROUP> inline U CumulativeProd<U,GROUP>::RightProd( const int& i , const int& j )
{
assert( i - 1 <= j );
return i <= j ? i == 0 ? this->m_right[j] : this->m_M.Product( this->m_M.Inverse( this->m_right[i-1] ) , this->m_right[j] ) : One();
}
template <typename U , typename GROUP> inline U CumulativeProd<U,GROUP>::LeftProd( const int& i , const int& j )
{
assert( i - 1 <= j );
return i <= j ? i == 0 ? this->m_left[j] : this->m_M.Product( this->m_left[j] , this->m_M.Inverse( this->m_left[i - 1] ) ) : One();
}
template <typename U , typename GROUP> ll CumulativeProd<U,GROUP>::CountRightProdInverseImage( const U& t )
{
Map<U,ll> f{};
f[t]++;
ll answer = 0;
for( int i = 0 ; i < this->m_size ; i++ ){
const U& m_right_i = this->m_right[i];
f.count( m_right_i ) == 1 ? answer += f[m_right_i] : answer;
f[this->m_M.Product( m_right_i , t )]++;
}
return answer;
}
template <typename U , typename GROUP> ll CumulativeProd<U,GROUP>::CountLeftProdInverseImage( const U& t )
{
Map<U,ll> f{};
f[t]++;
ll answer = 0;
for( int i = 0 ; i < this->m_size ; i++ ){
const U& m_left_i = this->m_left[i];
f.count( m_left_i ) == 1 ? answer += f[m_left_i] : answer;
f[this->m_M.Product( t , m_left_i )]++;
}
return answer;
}
template <typename U , typename GROUP> inline int CumulativeProd<U,GROUP>::Parent( const int& i ) { return i - 1; }
template <typename U , typename GROUP> inline int CumulativeProd<U,GROUP>::LCA( const int& i , const int& j ) { return min( i , j ); }
template <typename U , typename GROUP> inline const U& CumulativeProd<U,GROUP>::One() const { return this->m_M.One(); }
// AAA
#define INCLUDE_SUB
#include __FILE__
#else // INCLUDE_LIBRARY
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode , use_getline ); if( exec_mode == sample_debug_mode
      || exec_mode == submission_debug_mode || exec_mode == library_search_mode ){ RE 0; } else if( exec_mode == experiment_mode ){ Experiment(); RE
      0; } else if( exec_mode == small_test_mode ){ SmallTest(); RE 0; }; DEXPR( int , bound_test_case_num , BOUND , min( BOUND , 100 ) ); int
      test_case_num = 1; if( exec_mode == solve_mode ){ if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } }
      else if( exec_mode == random_test_mode ){ CERR( "" ); SET_LL( test_case_num ); } FINISH_MAIN
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
#define ASSERT( A , MIN , MAX ) CERR( "ASSERT " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX )
      ); AS( ( MIN ) <= A && A <= ( MAX ) )
#define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ SET_LL( A ); ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode
      ){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { AS( false ); }
#define SOLVE_ONLY ST_AS( __FUNCTION__[0] == 'S' )
#define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl
#define COUT( ... ) VariadicCout( cout << " " , __VA_ARGS__ ) << endl
#define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl
#define COUT_A( A , N ) cout << " "; OUTPUT_ARRAY( cout , A , N ) << endl
#define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl
#define COUT_ITR( A ) cout << " "; OUTPUT_ITR( cout , A ) << endl
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize ( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){
      SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
#define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) )
#define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX )
#define SOLVE_ONLY
#define CERR( ... )
#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL
#define CERR_A( A , N )
#define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL
#define CERR_ITR( A )
#define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL
#endif
#ifdef REACTIVE
#define ENDL endl
#else
#define ENDL "\n"
#endif
#ifdef USE_GETLINE
#define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); }
#define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )
#define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ )
#else
#define SET_LL( A ) cin >> A
#define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )
#define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; }
#define CIN_A( LL , A , N ) VE<LL> A( N ); SET_A( A , N );
#endif
#include <bits/stdc++.h>
using namespace std;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve
    (); CERR( "" ); } }
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()
#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )
#define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE
#define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .BE() , end_ ## ARRAY = ARRAY .EN()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )
#define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?""
    :" "); } OS
#define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.BE() , EN_FOR_OUTPUT_ITR = A.EN(); bool VARIABLE_FOR_OUTPUT_ITR =
    ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; WH( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR =
    ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS
#define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE
#define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" , #__VA_ARGS__
    , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; }
//
#define TE template
#define TY typename
#define US using
#define ST static
#define AS assert
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define LE length
#define PW Power
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
#define VI virtual
#define ST_AS static_assert
#define reMO_CO remove_const
#define is_COructible_v is_constructible_v
#define rBE rbegin
#define reSZ resize
//
#define decldecay_t( VAR ) decay_t<decltype( VAR )>
TE <TY F , TY...Args> US ret_t = decltype( declval<F>()( declval<Args>()... ) );
TE <TY T> US inner_t = TY T::type;
US uint = unsigned int;
US ll = long long;
US ull = unsigned long long;
US ld = long double;
US lld = __float128;
TE <TY INT> US T2 = pair<INT,INT>;
TE <TY INT> US T3 = tuple<INT,INT,INT>;
TE <TY INT> US T4 = tuple<INT,INT,INT,INT>;
US path = pair<int,ll>;
//
TE <CL Traits> IN basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { RE is; }
TE <CL Traits , TY Arg , TY... ARGS> IN basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg , ARGS&... args ) { RE
    VariadicCin( is >> arg , args... ); }
TE <CL Traits> IN basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , CO char& separator ) { RE is; }
TE <CL Traits , TY Arg , TY... ARGS> IN basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , CO char& separator , Arg& arg ,
    ARGS&... args ) { RE VariadicGetline( getline( is , arg , separator ) , separator , args... ); }
TE <CL Traits , TY Arg> IN basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , CO VE<Arg>& arg ) { auto BE = arg.BE() , EN = arg
    .EN(); auto itr = BE; WH( itr != EN ){ ( itr == BE ? os : os << " " ) << *itr; itr++; } RE os; }
TE <CL Traits , TY Arg> IN basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , CO Arg& arg ) { RE os << arg; }
TE <CL Traits , TY Arg1 , TY Arg2 , TY... ARGS> IN basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , CO Arg1& arg1 , CO
    Arg2& arg2 , CO ARGS&... args ) { RE VariadicCout( os << arg1 << " " , arg2 , args... ); }
//
TE <TY T> CE T PositiveBaseResidue( CO T& a , CO T& p ){ RE a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }
TE <TY T> CE T Residue( CO T& a , CO T& p ){ RE PositiveBaseResidue( a , p < 0 ? -p : p ); }
TE <TY T> CE T PositiveBaseQuotient( CO T& a , CO T& p ){ RE ( a - PositiveBaseResidue( a , p ) ) / p; }
TE <TY T> CE T Quotient( CO T& a , CO T& p ){ RE p < 0 ? PositiveBaseQuotient( -a , -p ) : PositiveBaseQuotient( a , p ); }
#define POWER( ANSWER , ARGUMENT , EXPONENT ) \
ST_AS( ! is_same<decldecay_t( ARGUMENT ),int>::value && ! is_same<decldecay_t( ARGUMENT ),uint>::value ); \
decldecay_t( ARGUMENT ) ANSWER{ 1 }; \
{ \
decldecay_t( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
ll ANSWER{ 1 }; \
{ \
ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( ARGUMENT ) % ( MODULO ) ) % ( MODULO ); \
ARGUMENT_FOR_SQUARE_FOR_POWER < 0 ? ARGUMENT_FOR_SQUARE_FOR_POWER += ( MODULO ) : ARGUMENT_FOR_SQUARE_FOR_POWER; \
decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CE_LENGTH , MODULO ) \
ll ANSWER[CE_LENGTH]; \
ll ANSWER_INV[CE_LENGTH]; \
ll INVERSE[CE_LENGTH]; \
{ \
ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \
FOREQ( i , 1 , MAX_INDEX ){ \
ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \
} \
ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
FOREQ( i , 2 , MAX_INDEX ){ \
ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % (
          MODULO ) ) ) %= ( MODULO ); \
} \
} \
//
// EXPRESSIONANSWER調EXPRESSION >= CO_TARGET
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CO_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \
ST_AS( ! is_same<decldecay_t( CO_TARGET ),uint>::value && ! is_same<decldecay_t( CO_TARGET ),ull>::value ); \
ll ANSWER = MINIMUM; \
{ \
ll L_BS = MINIMUM; \
ll U_BS = MAXIMUM; \
ANSWER = UPDATE_ANSWER; \
ll EXPRESSION_BS; \
CO ll CO_TARGET_BS = ( CO_TARGET ); \
ll DIFFERENCE_BS; \
WH( L_BS < U_BS ){ \
DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CO_TARGET_BS; \
CERR( "" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS :" , #EXPRESSION , "-" , #CO_TARGET , "=" ,
          EXPRESSION_BS , "-" , CO_TARGET_BS , "=" , DIFFERENCE_BS ); \
if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \
U_BS = UPDATE_U; \
} else { \
L_BS = UPDATE_L; \
} \
ANSWER = UPDATE_ANSWER; \
} \
if( L_BS > U_BS ){ \
CERR( "" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \
CERR( "" ); \
ANSWER = MAXIMUM + 1; \
} else { \
CERR( "" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS" ); \
CERR( "" , #EXPRESSION , "" ); \
CERR( "" ); \
EXPRESSION_BS = ( EXPRESSION ); \
CERR( "" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CO_TARGET_BS ? ">" : EXPRESSION_BS < CO_TARGET_BS ? "<" : "=" )
          , CO_TARGET_BS ); \
if( EXPRESSION_BS DESIRED_INEQUALITY CO_TARGET_BS ){ \
CERR( "" , #ANSWER , ":=" , ANSWER ); \
} else { \
CERR( "" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \
CERR( "調調調" ); \
ANSWER = MAXIMUM + 1; \
} \
} \
} \
// 調EXPRESSION >= CO_TARGET
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , >= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) \
// 調EXPRESSION <= CO_TARGET
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , > , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) \
// 調EXPRESSION >= CO_TARGET
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , < , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) \
// 調EXPRESSION <= CO_TARGET
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , <= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) \
// titeratorend()
TE <TY T> IN TY set<T>::iterator MaximumLeq( set<T>& S , CO T& t ) { CO auto EN = S.EN(); if( S.empty() ){ RE EN; } auto itr = S.upper_bound( t ); RE
    itr == EN ? S.find( *( S.rBE() ) ) : itr == S.BE() ? EN : --itr; }
// titeratorend()
TE <TY T> IN TY set<T>::iterator MaximumLt( set<T>& S , CO T& t ) { CO auto EN = S.EN(); if( S.empty() ){ RE EN; } auto itr = S.lower_bound( t ); RE
    itr == EN ? S.find( *( S.rBE() ) ) : itr == S.BE() ? EN : --itr; }
// titeratorend()
TE <TY T> IN TY set<T>::iterator MinimumGeq( set<T>& S , CO T& t ) { RE S.lower_bound( t ); }
// titeratorend()
TE <TY T> IN TY set<T>::iterator MinimumGt( set<T>& S , CO T& t ) { RE S.upper_bound( t ); }
//
TE <TY T , TE <TY...> TY V> IN V<T> OP+( CO V<T>& a0 , CO V<T>& a1 ) { if( a0.empty() ){ RE a1; } if( a1.empty() ){ RE a0; } AS( a0.SZ() == a1.SZ()
    ); V<T> answer{}; for( auto itr0 = a0.BE() , itr1 = a1.BE() , EN0 = a0.EN(); itr0 != EN0 ; itr0++ , itr1++ ){ answer.push_back( *itr0 + *itr1 );
    } RE answer; }
TE <TY T , TY U> IN pair<T,U> OP+( CO pair<T,U>& t0 , CO pair<T,U>& t1 ) { RE { t0.first + t1.first , t0.second + t1.second }; }
TE <TY T , TY U , TY V> IN tuple<T,U,V> OP+( CO tuple<T,U,V>& t0 , CO tuple<T,U,V>& t1 ) { RE { get<0>( t0 ) + get<0>( t1 ) , get<1>( t0 ) + get<1>(
    t1 ) , get<2>( t0 ) + get<2>( t1 ) }; }
TE <TY T , TY U , TY V , TY W> IN tuple<T,U,V,W> OP+( CO tuple<T,U,V,W>& t0 , CO tuple<T,U,V,W>& t1 ) { RE { get<0>( t0 ) + get<0>( t1 ) , get<1>( t0
    ) + get<1>( t1 ) , get<2>( t0 ) + get<2>( t1 ) , get<3>( t0 ) + get<3>( t1 ) }; }
TE <TY T> IN T Add( CO T& t0 , CO T& t1 ) { RE t0 + t1; }
TE <TY T> IN T XorAdd( CO T& t0 , CO T& t1 ){ RE t0 ^ t1; }
TE <TY T> IN T Multiply( CO T& t0 , CO T& t1 ) { RE t0 * t1; }
TE <TY T> IN CO T& Zero() { ST CO T z{}; RE z; }
TE <TY T> IN CO T& One() { ST CO T o = 1; RE o; }\
TE <TY T> IN T AddInv( CO T& t ) { RE -t; }
TE <TY T> IN T Id( CO T& v ) { RE v; }
TE <TY T> IN T Min( CO T& a , CO T& b ){ RE a < b ? a : b; }
TE <TY T> IN T Max( CO T& a , CO T& b ){ RE a < b ? b : a; }
//
int H , W , H_minus , W_minus , HW;
VE<VE<bool>> non_wall;
IN T2<int> EnumHW( CRI v ) { RE { v / W , v % W }; }
IN int EnumHW_inv( CRI h , CRI w ) { RE h * W + w; }
CO string direction[4] = {"U","R","D","L"};
// (i,j)->(k,h)
IN int DirectionNumberOnGrid( CRI i , CRI j , CRI k , CRI h ){RE i<k?2:i>k?0:j<h?1:j>h?3:(AS(false),-1);}
// v->w
IN int DirectionNumberOnGrid( CRI v , CRI w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);RE DirectionNumberOnGrid(i,j,k,h);}
// U<->DR<->L
IN int ReverseDirectionNumberOnGrid( CRI n ){AS(0<=n&&n<4);RE(n+2)%4;}
IN VO SetEdgeOnGrid( CO string& Si , CRI i , LI<int> ( &e )[] , CO char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v = EnumHW_inv(i,j);if(i
    >0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back(v);}if(j>0){e[EnumHW_inv(i,j-1)].push_back(v);}if(j+1<W
    ){e[EnumHW_inv(i,j+1)].push_back(v);}}}}
IN VO SetEdgeOnGrid( CO string& Si , CRI i , LI<path> ( &e )[] , CO char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){CO int v=EnumHW_inv(i,j);if
    (i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back({v,1});}if(j>0){e[EnumHW_inv(i,j-1)].push_back({v,1});}if(j
    +1<W){e[EnumHW_inv(i,j+1)].push_back({v,1});}}}}
IN VO SetWallOnGrid( CO string& Si , CRI i , VE<VE<bool>>& non_wall , CO char& walkable = '.' , CO char& unwalkable = '#' ){non_wall.push_back(VE
    <bool>(W));auto& non_wall_i=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable),false);}}
//
#ifdef DEBUG
IN VO AlertAbort( int n ) { CERR( "abortassert
      " ); }
VO AutoCheck( int& exec_mode , CO bool& use_getline );
IN VO Solve();
IN VO Experiment();
IN VO SmallTest();
IN VO RandomTest();
ll GetRand( CRL Rand_min , CRL Rand_max );
IN VO BreakPoint( CRI LINE ) {}
int exec_mode;
CEXPR( int , solve_mode , 0 );
CEXPR( int , sample_debug_mode , 1 );
CEXPR( int , submission_debug_mode , 2 );
CEXPR( int , library_search_mode , 3 );
CEXPR( int , experiment_mode , 4 );
CEXPR( int , small_test_mode , 5 );
CEXPR( int , random_test_mode , 6 );
#ifdef USE_GETLINE
CEXPR( bool , use_getline , true );
#else
CEXPR( bool , use_getline , false );
#endif
#else
ll GetRand( CRL Rand_min , CRL Rand_max ) { ll answer = time( NULL ); RE answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; }
#endif
// VVV
// Map
// c:/Users/user/Documents/Programming/Mathematics/Function/Map/compress.txt
CL is_ordered{PU:is_ordered()= delete;TE <TY T> ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE <TY T> ST CE
    CO bool value = is_same_v< decltype(Check(declval<T>())),true_type >;};
TE <TY T , TY U>US Map = conditional_t<is_COructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,VO>>;
// Algebra
// c:/Users/user/Documents/Programming/Mathematics/Algebra/compress.txt
#define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE
#define DC_OF_POINT(POINT)IN U& POINT() NE
#define DF_OF_CPOINT(POINT)TE <TY U> IN CO U& VirtualPointedSet<U>::POINT()CO NE{RE Point();}
#define DF_OF_POINT(POINT)TE <TY U> IN U& VirtualPointedSet<U>::POINT()NE{RE Point();}
TE <TY U>CL UnderlyingSet{PU:US type = U;};TE <TY U>CL VirtualPointedSet:VI PU UnderlyingSet<U>{PU:VI CO U& Point()CO NE = 0;VI U& Point() NE = 0
    ;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE <TY U>CL PointedSet:VI PU
    VirtualPointedSet<U>{PU:U m_b_U;IN PointedSet(CO U& b_u = U());IN CO U& Point()CO NE;IN U& Point() NE;};TE <TY U>CL VirtualNSet:VI PU
    UnderlyingSet<U>{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE <TY U,TY F_U>CL AbstractNSet:VI PU VirtualNSet<U>{PU:F_U& m_f_U;IN
    AbstractNSet(F_U& f_U);IN U Transfer(CO U& u);};TE <TY U>CL VirtualMagma:VI PU UnderlyingSet<U>{PU:VI U Product(CO U& u0,CO U& u1)= 0;IN U Sum(CO
    U& u0,CO U& u1);};TE <TY U = ll>CL AdditiveMagma:VI PU VirtualMagma<U>{PU:IN U Product(CO U& u0,CO U& u1);};TE <TY U = ll>CL MultiplicativeMagma
    :VI PU VirtualMagma<U>{PU:IN U Product(CO U& u0,CO U& u1);};TE <TY U,TY M_U>CL AbstractMagma:VI PU VirtualMagma<U>{PU:M_U& m_m_U;IN AbstractMagma
    (M_U& m_U);IN U Product(CO U& u0,CO U& u1);};
TE <TY U> IN PointedSet<U>::PointedSet(CO U& b_U):m_b_U(b_U){}TE <TY U> IN CO U& PointedSet<U>::Point()CO NE{RE m_b_U;}TE <TY U> IN U& PointedSet<U
    >::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE <TY U
    ,TY F_U> IN AbstractNSet<U,F_U>::AbstractNSet(F_U& f_U):m_f_U(f_U){ST_AS(is_invocable_r_v<U,F_U,U>);}TE <TY U,TY F_U> IN U AbstractNSet<U,F_U
    >::Transfer(CO U& u){RE m_f_U(u);}TE <TY U> IN U VirtualNSet<U>::Inverse(CO U& u){RE Transfer(u);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U
    >::AbstractMagma(M_U& m_U):m_m_U(m_U){ST_AS(is_invocable_r_v<U,M_U,U,U>);}TE <TY U> IN U AdditiveMagma<U>::Product(CO U& u0,CO U& u1){RE u0 + u1
    ;}TE <TY U> IN U MultiplicativeMagma<U>::Product(CO U& u0,CO U& u1){RE u0 * u1;}TE <TY U,TY M_U> IN U AbstractMagma<U,M_U>::Product(CO U& u0,CO
    U& u1){RE m_m_U(u0,u1);}TE <TY U> IN U VirtualMagma<U>::Sum(CO U& u0,CO U& u1){RE Product(u0,u1);}
TE <TY U>CL VirtualMonoid:VI PU VirtualMagma<U>,VI PU VirtualPointedSet<U>{};TE <TY U = ll>CL AdditiveMonoid:VI PU VirtualMonoid<U>,PU AdditiveMagma
    <U>,PU PointedSet<U>{PU:IN U Product(CO U& u0,CO U& u1);};TE <TY U = ll>CL MultiplicativeMonoid:VI PU VirtualMonoid<U>,PU MultiplicativeMagma<U
    >,PU PointedSet<U>{PU:IN MultiplicativeMonoid(CO U& e_U);IN U Product(CO U& u0,CO U& u1);};TE <TY U,TY M_U>CL AbstractMonoid:VI PU VirtualMonoid
    <U>,PU AbstractMagma<U,M_U>,PU PointedSet<U>{PU:IN AbstractMonoid(M_U& m_U,CO U& e_U);};
TE <TY U> IN MultiplicativeMonoid<U>::MultiplicativeMonoid(CO U& e_U):PointedSet<U>(e_U){}TE <TY U,TY M_U> IN AbstractMonoid<U,M_U>::AbstractMonoid
    (M_U& m_U,CO U& e_U):AbstractMagma<U,M_U>(m_U),PointedSet<U>(e_U){}
TE <TY U>CL VirtualGroup:VI PU VirtualMonoid<U>,VI PU VirtualPointedSet<U>,VI PU VirtualNSet<U>{};TE <TY U = ll>CL AdditiveGroup:VI PU VirtualGroup<U
    >,PU AdditiveMonoid<U>{PU:IN U Transfer(CO U& u);};TE <TY U,TY M_U,TY I_U>CL AbstractGroup:VI PU VirtualGroup<U>,PU AbstractMonoid<U,M_U>,PU
    AbstractNSet<U,I_U>{PU:IN AbstractGroup(M_U& m_U,CO U& e_U,I_U& i_U);IN U Transfer(CO U& u);};
TE <TY U,TY M_U,TY I_U> IN AbstractGroup<U,M_U,I_U>::AbstractGroup(M_U& m_U,CO U& e_U,I_U& i_U):AbstractMonoid<U,M_U>(m_U,e_U),AbstractNSet<U,I_U
    >(i_U){}TE <TY U,TY M_U,TY I_U> IN U AbstractGroup<U,M_U,I_U>::Transfer(CO U& u){RE this->m_f_U(u);}TE <TY U> IN U AdditiveGroup<U>::Transfer(CO
    U& u){RE -u;}
// Graph
// c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/compress.txt
#define SFINAE_FOR_GRAPH TY T,TY E,enable_if_t<is_invocable_v<E,T>,void*> PTR
TE <TY T,TY R1,TY R2,TY E>CL VirtualGraph:PU UnderlyingSet<T>{PU:int m_SZ;E m_edge;IN VirtualGraph(CRI SZ,E edge);VI R1 Enumeration(CRI i)= 0;VI R2
    Enumeration_inv(CO T& t)= 0;IN VO Reset();IN CRI SZ()CO NE;IN E& edge()NE;IN ret_t<E,T> Edge(CO T& t);US type = T;};TE <TY E>CL Graph:VI PU
    VirtualGraph<int,CRI,CRI,E>{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i);IN CRI Enumeration_inv(CRI t);TE <TY F> IN Graph<F> GetGraph(F
    edge)CO;};TE <TY T,TY Enum_T,TY Enum_T_inv,TY E>CL EnumerationGraph:VI PU VirtualGraph<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>{PU:Enum_T&
    m_enum_T;Enum_T_inv& m_enum_T_inv;IN EnumerationGraph(CRI SZ,Enum_T& enum_T,Enum_T_inv& enum_T_inv,E edge);IN ret_t<Enum_T,int> Enumeration(CRI i
    );IN ret_t<Enum_T_inv,T> Enumeration_inv(CO T& t);TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> GetGraph(F edge)CO;};TE <TY Enum_T,TY
    Enum_T_inv,TY E> EnumerationGraph(CRI SZ,Enum_T& enum_T,Enum_T_inv& enum_T_inv,E edge)-> EnumerationGraph<decldecay_t(declval<Enum_T>()(0
    )),Enum_T,Enum_T_inv,E>;TE <SFINAE_FOR_GRAPH = nullptr>CL MemorisationGraph:VI PU VirtualGraph<T,T,CRI,E>{PU:int m_LE;VE<T> m_memory;Map<T,int>
    m_memory_inv;IN MemorisationGraph(CRI SZ,E edge);IN T Enumeration(CRI i);IN CRI Enumeration_inv(CO T& t);IN VO Reset();TE <TY F> IN
    MemorisationGraph<T,F> GetGraph(F edge)CO;};TE <TY E> MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph<decldecay_t(declval<E>()().back()),E
    >;TE <TY E> MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph<decldecay_t(get<0>(declval<E>()().back())),E>;
TE <TY T,TY R1,TY R2,TY E> IN VirtualGraph<T,R1,R2,E>::VirtualGraph(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v<T,R1> &&
    is_COructible_v<int,R2> && is_invocable_v<E,T>);}TE <TY E> IN Graph<E>::Graph(CRI SZ,E edge):VirtualGraph<int,CRI,CRI,E>(SZ,MO(edge)){}TE <TY T
    ,TY Enum_T,TY Enum_T_inv,TY E> IN EnumerationGraph<T,Enum_T,Enum_T_inv,E>::EnumerationGraph(CRI SZ,Enum_T& enum_T,Enum_T_inv& enum_T_inv,E edge
    ):VirtualGraph<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>(SZ,MO(edge)),m_enum_T(enum_T),m_enum_T_inv(enum_T_inv){}TE <SFINAE_FOR_GRAPH> IN
    MemorisationGraph<T,E,PTR>::MemorisationGraph(CRI SZ,E edge):VirtualGraph<T,T,CRI,E>(SZ,MO(edge)),m_LE(),m_memory(),m_memory_inv(){}TE <TY E> IN
    CRI Graph<E>::Enumeration(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN ret_t<Enum_T,int> EnumerationGraph<T,Enum_T,Enum_T_inv,E
    >::Enumeration(CRI i){RE m_enum_T(i);}TE <SFINAE_FOR_GRAPH> IN T MemorisationGraph<T,E,PTR>::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE
    m_memory[i];}TE <TY E> IN CRI Graph<E>::Enumeration_inv(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN ret_t<Enum_T_inv,T>
    EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration_inv(CO T& t){RE m_enum_T_inv(t);}TE <SFINAE_FOR_GRAPH> IN CRI MemorisationGraph<T,E,PTR
    >::Enumeration_inv(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]= m_LE++;}RE
    m_memory_inv[t];}TE <TY T,TY R1,TY R2,TY E> VO VirtualGraph<T,R1,R2,E>::Reset(){}TE <SFINAE_FOR_GRAPH> IN VO MemorisationGraph<T,E,PTR>::Reset
    (){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE <TY T,TY R1,TY R2,TY E> IN CRI VirtualGraph<T,R1,R2,E>::SZ()CO NE{RE m_SZ;}TE <TY T,TY R1
    ,TY R2,TY E> IN E& VirtualGraph<T,R1,R2,E>::edge()NE{RE m_edge;}TE <TY T,TY R1,TY R2,TY E> IN ret_t<E,T> VirtualGraph<T,R1,R2,E>::Edge(CO T& t
    ){RE m_edge(t);}TE <TY E> TE <TY F> IN Graph<F> Graph<E>::GetGraph(F edge)CO{RE Graph<F>(TH->SZ(),MO(edge));}TE <TY T,TY Enum_T,TY Enum_T_inv,TY
    E> TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::GetGraph(F edge)CO{RE EnumerationGraph(TH->SZ
    (),m_enum_T,m_enum_T_inv,MO(edge));}TE <SFINAE_FOR_GRAPH> TE <TY F> IN MemorisationGraph<T,F> MemorisationGraph<T,E,PTR>::GetGraph(F edge)CO{RE
    MemorisationGraph(TH->SZ(),MO(edge));}
// ConstexprModulo
// c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txt
CEXPR(uint,P,998244353);TE <uint M,TY INT> CE INT& RS(INT& n)NE{RE n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n %= M;}TE <uint M> CE uint& RS(uint& n
    )NE{RE n %= M;}TE <uint M> CE ull& RS(ull& n)NE{RE n %= M;}TE <TY INT> CE INT& RSP(INT& n)NE{CE CO uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &
    = trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;}TE <> CE ull& RS<P,ull>(ull& n)NE{CE CO ull
    Pull = P;CE CO ull Pull2 =(Pull - 1)*(Pull - 1);RE RSP(n > Pull2?n -= Pull2:n);}TE <uint M,TY INT> CE INT RS(INT&& n)NE{RE MO(RS<M>(n));}TE <uint
    M,TY INT> CE INT RS(CO INT& n)NE{RE RS<M>(INT(n));}
#define SFINAE_FOR_MOD(DEFAULT)TY T,enable_if_t<is_COructible_v<uint,decay_t<T>>>* DEFAULT
#define DC_OF_CM_FOR_MOD(FUNC)CE bool OP FUNC(CO Mod<M>& n)CO NE
#define DC_OF_AR_FOR_MOD(FUNC)CE Mod<M> OP FUNC(CO Mod<M>& n)CO NE;TE <SFINAE_FOR_MOD(= nullptr)> CE Mod<M> OP FUNC(T&& n)CO NE;
#define DF_OF_CM_FOR_MOD(FUNC)TE <uint M> CE bool Mod<M>::OP FUNC(CO Mod<M>& n)CO NE{RE m_n FUNC n.m_n;}
#define DF_OF_AR_FOR_MOD(FUNC,FORMULA)TE <uint M> CE Mod<M> Mod<M>::OP FUNC(CO Mod<M>& n)CO NE{RE MO(Mod<M>(*TH)FUNC ## = n);}TE <uint M> TE
    <SFINAE_FOR_MOD()> CE Mod<M> Mod<M>::OP FUNC(T&& n)CO NE{RE FORMULA;}TE <uint M,SFINAE_FOR_MOD(= nullptr)> CE Mod<M> OP FUNC(T&& n0,CO Mod<M>& n1
    )NE{RE MO(Mod<M>(forward<T>(n0))FUNC ## = n1);}
TE <uint M>CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod<M>& n)NE;CE Mod(Mod<M>& n)NE;CE Mod(Mod<M>&& n)NE;TE <SFINAE_FOR_MOD(= nullptr)> CE Mod(CO T&
    n)NE;TE <SFINAE_FOR_MOD(= nullptr)> CE Mod(T& n)NE;TE <SFINAE_FOR_MOD(= nullptr)> CE Mod(T&& n)NE;CE Mod<M>& OP=(CO Mod<M>& n)NE;CE Mod<M>& OP
    =(Mod<M>&& n)NE;CE Mod<M>& OP+=(CO Mod<M>& n)NE;CE Mod<M>& OP-=(CO Mod<M>& n)NE;CE Mod<M>& OP*=(CO Mod<M>& n)NE;IN Mod<M>& OP/=(CO Mod<M>& n);CE
    Mod<M>& OP<<=(int n)NE;CE Mod<M>& OP>>=(int n)NE;CE Mod<M>& OP++()NE;CE Mod<M> OP++(int)NE;CE Mod<M>& OP--()NE;CE Mod<M> OP--(int)NE
    ;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD
    (+);DC_OF_AR_FOR_MOD(-);DC_OF_AR_FOR_MOD(*);DC_OF_AR_FOR_MOD(/);CE Mod<M> OP<<(int n)CO NE;CE Mod<M> OP>>(int n)CO NE;CE Mod<M> OP-()CO NE;CE Mod
    <M>& SignInvert()NE;CE Mod<M>& Double()NE;CE Mod<M>& Halve()NE;IN Mod<M>& Invert();TE <TY T> CE Mod<M>& PositivePW(T&& EX)NE;TE <TY T> CE Mod<M>&
    NonNegativePW(T&& EX)NE;TE <TY T> CE Mod<M>& PW(T&& EX);CE VO swap(Mod<M>& n)NE;CE CRUI RP()CO NE;ST CE Mod<M> DeRP(CRUI n)NE;ST CE uint&
    Normalise(uint& n)NE;ST IN CO Mod<M>& Inverse(CRUI n)NE;ST IN CO Mod<M>& Factorial(CRUI n)NE;ST IN CO Mod<M>& FactorialInverse(CRUI n)NE;ST IN
    Mod<M> Combination(CRUI n,CRUI i)NE;ST IN CO Mod<M>& zero()NE;ST IN CO Mod<M>& one()NE;TE <TY T> CE Mod<M>& Ref(T&& n)NE;};
#define SFINAE_FOR_MN(DEFAULT)TY T,enable_if_t<is_COructible_v<Mod<M>,decay_t<T>>>* DEFAULT
#define DC_OF_AR_FOR_MN(FUNC)IN MN<M> OP FUNC(CO MN<M>& n)CO NE;TE <SFINAE_FOR_MOD(= nullptr)> IN MN<M> OP FUNC(T&& n)CO NE;
#define DF_OF_CM_FOR_MN(FUNC)TE <uint M> IN bool MN<M>::OP FUNC(CO MN<M>& n)CO NE{RE m_n FUNC n.m_n;}
#define DF_OF_AR_FOR_MN(FUNC,FORMULA)TE <uint M> IN MN<M> MN<M>::OP FUNC(CO MN<M>& n)CO NE{RE MO(MN<M>(*TH)FUNC ## = n);}TE <uint M> TE
    <SFINAE_FOR_MOD()> IN MN<M> MN<M>::OP FUNC(T&& n)CO NE{RE FORMULA;}TE <uint M,SFINAE_FOR_MOD(= nullptr)> IN MN<M> OP FUNC(T&& n0,CO MN<M>& n1
    )NE{RE MO(MN<M>(forward<T>(n0))FUNC ## = n1);}
TE <uint M>CL MN:PU Mod<M>{PU:CE MN()NE;CE MN(CO MN<M>& n)NE;CE MN(MN<M>& n)NE;CE MN(MN<M>&& n)NE;TE <SFINAE_FOR_MN(= nullptr)> CE MN(CO T& n)NE;TE
    <SFINAE_FOR_MN(= nullptr)> CE MN(T&& n)NE;CE MN<M>& OP=(CO MN<M>& n)NE;CE MN<M>& OP=(MN<M>&& n)NE;CE MN<M>& OP+=(CO MN<M>& n)NE;CE MN<M>& OP-=(CO
    MN<M>& n)NE;CE MN<M>& OP*=(CO MN<M>& n)NE;IN MN<M>& OP/=(CO MN<M>& n);CE MN<M>& OP<<=(int n)NE;CE MN<M>& OP>>=(int n)NE;CE MN<M>& OP++()NE;CE MN
    <M> OP++(int)NE;CE MN<M>& OP--()NE;CE MN<M> OP--(int)NE;DC_OF_AR_FOR_MN(+);DC_OF_AR_FOR_MN(-);DC_OF_AR_FOR_MN(*);DC_OF_AR_FOR_MN(/);CE MN<M> OP
    <<(int n)CO NE;CE MN<M> OP>>(int n)CO NE;CE MN<M> OP-()CO NE;CE MN<M>& SignInvert()NE;CE MN<M>& Double()NE;CE MN<M>& Halve()NE;CE MN<M>& Invert
    ();TE <TY T> CE MN<M>& PositivePW(T&& EX)NE;TE <TY T> CE MN<M>& NonNegativePW(T&& EX)NE;TE <TY T> CE MN<M>& PW(T&& EX);CE uint RP()CO NE;CE Mod<M
    > Reduce()CO NE;ST CE MN<M> DeRP(CRUI n)NE;ST IN CO MN<M>& Formise(CRUI n)NE;ST IN CO MN<M>& Inverse(CRUI n)NE;ST IN CO MN<M>& Factorial(CRUI n
    )NE;ST IN CO MN<M>& FactorialInverse(CRUI n)NE;ST IN MN<M> Combination(CRUI n,CRUI i)NE;ST IN CO MN<M>& zero()NE;ST IN CO MN<M>& one()NE;ST CE
    uint Form(CRUI n)NE;ST CE ull& Reduction(ull& n)NE;ST CE ull& ReducedMU(ull& n,CRUI m)NE;ST CE uint MU(CRUI n0,CRUI n1)NE;ST CE uint
    BaseSquareTruncation(uint& n)NE;TE <TY T> CE MN<M>& Ref(T&& n)NE;};TE <uint M> CE MN<M> Twice(CO MN<M>& n)NE;TE <uint M> CE MN<M> Half(CO MN<M>&
    n)NE;TE <uint M> CE MN<M> Inverse(CO MN<M>& n);TE <uint M,TY T> CE MN<M> PW(MN<M> n,T EX);TE <TY T> CE MN<2> PW(CO MN<2>& n,CO T& p);TE <TY T> CE
    T Square(CO T& t);TE <> CE MN<2> Square<MN<2>>(CO MN<2>& t);TE <uint M> CE VO swap(MN<M>& n0,MN<M>& n1)NE;TE <uint M> IN string to_string(CO MN<M
    >& n)NE;TE<uint M,CL Traits> IN basic_istream<char,Traits>& OP>>(basic_istream<char,Traits>& is,MN<M>& n);TE<uint M,CL Traits> IN basic_ostream
    <char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO MN<M>& n);
TE <uint M>CL COantsForMod{PU:COantsForMod()= delete;ST CE CO bool g_even =((M & 1)== 0);ST CE CO uint g_memory_bound = 1000000;ST CE CO uint
    g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE ull MNBasePW(ull&& EX)NE;ST CE uint g_M_minus = M - 1;ST CE uint g_M_minus_2 = M - 2;ST
    CE uint g_M_minus_2_neg = 2 - M;ST CE CO int g_MN_digit = 32;ST CE CO ull g_MN_base = ull(1)<< g_MN_digit;ST CE CO uint g_MN_base_minus = uint
    (g_MN_base - 1);ST CE CO uint g_MN_digit_half =(g_MN_digit + 1)>> 1;ST CE CO uint g_MN_base_sqrt_minus =(1 << g_MN_digit_half)- 1;ST CE CO uint
    g_MN_M_neg_inverse = uint((g_MN_base - MNBasePW((ull(1)<<(g_MN_digit - 1))- 1))& g_MN_base_minus);ST CE CO uint g_MN_base_mod = uint(g_MN_base %
    M);ST CE CO uint g_MN_base_square_mod = uint(((g_MN_base % M)*(g_MN_base % M))% M);};TE <uint M> CE ull COantsForMod<M>::MNBasePW(ull&& EX)NE{ull
    prod = 1;ull PW = M;WH(EX != 0){(EX & 1)== 1?(prod *= PW)&= g_MN_base_minus:prod;EX >>= 1;(PW *= PW)&= g_MN_base_minus;}RE prod;}
US MP = Mod<P>;US MNP = MN<P>;TE <uint M> CE uint MN<M>::Form(CRUI n)NE{ull n_copy = n;RE uint(MO(Reduction(n_copy *= COantsForMod<M
    >::g_MN_base_square_mod)));}TE <uint M> CE ull& MN<M>::Reduction(ull& n)NE{ull n_sub = n & COantsForMod<M>::g_MN_base_minus;RE((n +=((n_sub *=
    COantsForMod<M>::g_MN_M_neg_inverse)&= COantsForMod<M>::g_MN_base_minus)*= M)>>= COantsForMod<M>::g_MN_digit)< M?n:n -= M;}TE <uint M> CE ull& MN
    <M>::ReducedMU(ull& n,CRUI m)NE{RE Reduction(n *= m);}TE <uint M> CE uint MN<M>::MU(CRUI n0,CRUI n1)NE{ull n0_copy = n0;RE uint(MO(ReducedMU
    (ReducedMU(n0_copy,n1),COantsForMod<M>::g_MN_base_square_mod)));}TE <uint M> CE uint MN<M>::BaseSquareTruncation(uint& n)NE{CO uint n_u = n >>
    COantsForMod<M>::g_MN_digit_half;n &= COantsForMod<M>::g_MN_base_sqrt_minus;RE n_u;}TE <uint M> CE MN<M>::MN()NE:Mod<M>(){ST_AS(! COantsForMod<M
    >::g_even);}TE <uint M> CE MN<M>::MN(CO MN<M>& n)NE:Mod<M>(n){}TE <uint M> CE MN<M>::MN(MN<M>& n)NE:Mod<M>(n){}TE <uint M> CE MN<M>::MN(MN<M>&& n
    )NE:Mod<M>(MO(n)){}TE <uint M> TE <SFINAE_FOR_MN()> CE MN<M>::MN(CO T& n)NE:Mod<M>(n){ST_AS(! COantsForMod<M>::g_even);Mod<M>::m_n = Form(Mod<M
    >::m_n);}TE <uint M> TE <SFINAE_FOR_MN()> CE MN<M>::MN(T&& n)NE:Mod<M>(forward<T>(n)){ST_AS(! COantsForMod<M>::g_even);Mod<M>::m_n = Form(Mod<M
    >::m_n);}TE <uint M> CE MN<M>& MN<M>::OP=(CO MN<M>& n)NE{RE Ref(Mod<M>::OP=(n));}TE <uint M> CE MN<M>& MN<M>::OP=(MN<M>&& n)NE{RE Ref(Mod<M>::OP
    =(MO(n)));}TE <uint M> CE MN<M>& MN<M>::OP+=(CO MN<M>& n)NE{RE Ref(Mod<M>::OP+=(n));}TE <uint M> CE MN<M>& MN<M>::OP-=(CO MN<M>& n)NE{RE Ref(Mod
    <M>::OP-=(n));}TE <uint M> CE MN<M>& MN<M>::OP*=(CO MN<M>& n)NE{ull m_n_copy = Mod<M>::m_n;RE Ref(Mod<M>::m_n = MO(ReducedMU(m_n_copy,n.m_n
    )));}TE <uint M> IN MN<M>& MN<M>::OP/=(CO MN<M>& n){RE OP*=(MN<M>(n).Invert());}TE <uint M> CE MN<M>& MN<M>::OP<<=(int n)NE{RE Ref(Mod<M>::OP
    <<=(n));}TE <uint M> CE MN<M>& MN<M>::OP>>=(int n)NE{RE Ref(Mod<M>::OP>>=(n));}TE <uint M> CE MN<M>& MN<M>::OP++()NE{RE Ref(Mod<M>::Normalise(Mod
    <M>::m_n += COantsForMod<M>::g_MN_base_mod));}TE <uint M> CE MN<M> MN<M>::OP++(int)NE{MN<M> n{*TH};OP++();RE n;}TE <uint M> CE MN<M>& MN<M>::OP
    --()NE{RE Ref(Mod<M>::m_n < COantsForMod<M>::g_MN_base_mod?((Mod<M>::m_n += M)-= COantsForMod<M>::g_MN_base_mod):Mod<M>::m_n -= COantsForMod<M
    >::g_MN_base_mod);}TE <uint M> CE MN<M> MN<M>::OP--(int)NE{MN<M> n{*TH};OP--();RE n;}DF_OF_AR_FOR_MN(+,MN<M>(forward<T>(n))+= *TH
    );DF_OF_AR_FOR_MN(-,MN<M>(forward<T>(n)).SignInvert()+= *TH);DF_OF_AR_FOR_MN(*,MN<M>(forward<T>(n))*= *TH);DF_OF_AR_FOR_MN(/,MN<M>(forward<T>(n
    )).Invert()*= *TH);TE <uint M> CE MN<M> MN<M>::OP<<(int n)CO NE{RE MO(MN<M>(*TH)<<= n);}TE <uint M> CE MN<M> MN<M>::OP>>(int n)CO NE{RE MO(MN<M
    >(*TH)>>= n);}TE <uint M> CE MN<M> MN<M>::OP-()CO NE{RE MO(MN<M>(*TH).SignInvert());}TE <uint M> CE MN<M>& MN<M>::SignInvert()NE{RE Ref(Mod<M
    >::m_n > 0?Mod<M>::m_n = M - Mod<M>::m_n:Mod<M>::m_n);}TE <uint M> CE MN<M>& MN<M>::Double()NE{RE Ref(Mod<M>::Double());}TE <uint M> CE MN<M>& MN
    <M>::Halve()NE{RE Ref(Mod<M>::Halve());}TE <uint M> CE MN<M>& MN<M>::Invert(){assert(Mod<M>::m_n > 0);RE PositivePW(uint(COantsForMod<M
    >::g_M_minus_2));}TE <uint M> TE <TY T> CE MN<M>& MN<M>::PositivePW(T&& EX)NE{MN<M> PW{*TH};(--EX)%= COantsForMod<M>::g_M_minus_2;WH(EX != 0){(EX
    & 1)== 1?OP*=(PW):*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <uint M> TE <TY T> CE MN<M>& MN<M>::NonNegativePW(T&& EX)NE{RE EX == 0?Ref(Mod<M>::m_n =
    COantsForMod<M>::g_MN_base_mod):PositivePW(forward<T>(EX));}TE <uint M> TE <TY T> CE MN<M>& MN<M>::PW(T&& EX){bool neg = EX < 0;assert(!(neg &&
    Mod<M>::m_n == 0));RE neg?PositivePW(forward<T>(EX *= COantsForMod<M>::g_M_minus_2_neg)):NonNegativePW(forward<T>(EX));}TE <uint M> CE uint MN<M
    >::RP()CO NE{ull m_n_copy = Mod<M>::m_n;RE MO(Reduction(m_n_copy));}TE <uint M> CE Mod<M> MN<M>::Reduce()CO NE{ull m_n_copy = Mod<M>::m_n;RE Mod
    <M>::DeRP(MO(Reduction(m_n_copy)));}TE <uint M> CE MN<M> MN<M>::DeRP(CRUI n)NE{RE MN<M>(Mod<M>::DeRP(n));}TE <uint M> IN CO MN<M>& MN<M>::Formise
    (CRUI n)NE{ST MN<M> memory[COantsForMod<M>::g_memory_LE] ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = DeRP(LE_curr
    );LE_curr++;}RE memory[n];}TE <uint M> IN CO MN<M>& MN<M>::Inverse(CRUI n)NE{ST MN<M> memory[COantsForMod<M>::g_memory_LE] ={zero(),one()};ST
    uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = MN<M>(Mod<M>::Inverse(LE_curr));LE_curr++;}RE memory[n];}TE <uint M> IN CO MN<M>& MN<M
    >::Factorial(CRUI n)NE{ST MN<M> memory[COantsForMod<M>::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;ST MN<M> val_curr{one()};ST MN<M>
    val_last{one()};WH(LE_curr <= n){memory[LE_curr++] = val_curr *= ++val_last;}RE memory[n];}TE <uint M> IN CO MN<M>& MN<M>::FactorialInverse(CRUI
    n)NE{ST MN<M> memory[COantsForMod<M>::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;ST MN<M> val_curr{one()};ST MN<M> val_last{one()};WH
    (LE_curr <= n){memory[LE_curr] = val_curr *= Inverse(LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN MN<M> MN<M>::Combination(CRUI n,CRUI i
    )NE{RE i <= n?Factorial(n)*FactorialInverse(i)*FactorialInverse(n - i):zero();}TE <uint M> IN CO MN<M>& MN<M>::zero()NE{ST CE CO MN<M> z{};RE z
    ;}TE <uint M> IN CO MN<M>& MN<M>::one()NE{ST CE CO MN<M> o{DeRP(1)};RE o;}TE <uint M> TE <TY T> CE MN<M>& MN<M>::Ref(T&& n)NE{RE *TH;}TE <uint M>
    CE MN<M> Twice(CO MN<M>& n)NE{RE MO(MN<M>(n).Double());}TE <uint M> CE MN<M> Half(CO MN<M>& n)NE{RE MO(MN<M>(n).Halve());}TE <uint M> CE MN<M>
    Inverse(CO MN<M>& n){RE MO(MN<M>(n).Invert());}TE <uint M,TY T> CE MN<M> PW(MN<M> n,T EX){RE MO(n.PW(EX));}TE <uint M> CE VO swap(MN<M>& n0,MN<M
    >& n1)NE{n0.swap(n1);}TE <uint M> IN string to_string(CO MN<M>& n)NE{RE to_string(n.RP())+ " + MZ";}TE<uint M,CL Traits> IN basic_istream<char
    ,Traits>& OP>>(basic_istream<char,Traits>& is,MN<M>& n){ll m;is >> m;n = m;RE is;}TE<uint M,CL Traits> IN basic_ostream<char,Traits>& OP
    <<(basic_ostream<char,Traits>& os,CO MN<M>& n){RE os << n.RP();}
TE <uint M> CE Mod<M>::Mod()NE:m_n(){}TE <uint M> CE Mod<M>::Mod(CO Mod<M>& n)NE:m_n(n.m_n){}TE <uint M> CE Mod<M>::Mod(Mod<M>& n)NE:m_n(n.m_n){}TE
    <uint M> CE Mod<M>::Mod(Mod<M>&& n)NE:m_n(MO(n.m_n)){}TE <uint M> TE <SFINAE_FOR_MOD()> CE Mod<M>::Mod(CO T& n)NE:m_n(RS<M>(n)){}TE <uint M> TE
    <SFINAE_FOR_MOD()> CE Mod<M>::Mod(T& n)NE:m_n(RS<M>(decay_t<T>(n))){}TE <uint M> TE <SFINAE_FOR_MOD()> CE Mod<M>::Mod(T&& n)NE:m_n(RS<M>(forward
    <T>(n))){}TE <uint M> CE Mod<M>& Mod<M>::OP=(CO Mod<M>& n)NE{RE Ref(m_n = n.m_n);}TE <uint M> CE Mod<M>& Mod<M>::OP=(Mod<M>&& n)NE{RE Ref(m_n =
    MO(n.m_n));}TE <uint M> CE Mod<M>& Mod<M>::OP+=(CO Mod<M>& n)NE{RE Ref(Normalise(m_n += n.m_n));}TE <uint M> CE Mod<M>& Mod<M>::OP-=(CO Mod<M>& n
    )NE{RE Ref(m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n);}TE <uint M> CE Mod<M>& Mod<M>::OP*=(CO Mod<M>& n)NE{RE Ref(m_n = COantsForMod<M>::g_even
    ?RS<M>(ull(m_n)* n.m_n):MN<M>::MU(m_n,n.m_n));}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;RE Ref(m_n = MO((m_n_copy *= n.m_n)< P
    ?m_n_copy:RSP(m_n_copy)));}TE <uint M> IN Mod<M>& Mod<M>::OP/=(CO Mod<M>& n){RE OP*=(Mod<M>(n).Invert());}TE <uint M> CE Mod<M>& Mod<M>::OP
    <<=(int n)NE{WH(n-- > 0){Normalise(m_n <<= 1);}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP>>=(int n)NE{WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>=
    1;}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP++()NE{RE Ref(m_n < COantsForMod<M>::g_M_minus?++m_n:m_n = 0);}TE <uint M> CE Mod<M> Mod<M>::OP++(int
    )NE{Mod<M> n{*TH};OP++();RE n;}TE <uint M> CE Mod<M>& Mod<M>::OP--()NE{RE Ref(m_n == 0?m_n = COantsForMod<M>::g_M_minus:--m_n);}TE <uint M> CE
    Mod<M> Mod<M>::OP--(int)NE{Mod<M> n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD
    (>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,Mod<M>(forward<T>(n))+= *TH);DF_OF_AR_FOR_MOD(-,Mod<M>(forward<T>(n)).SignInvert
    ()+= *TH);DF_OF_AR_FOR_MOD(*,Mod<M>(forward<T>(n))*= *TH);DF_OF_AR_FOR_MOD(/,Mod<M>(forward<T>(n)).Invert()*= *TH);TE <uint M> CE Mod<M> Mod<M
    >::OP<<(int n)CO NE{RE MO(Mod<M>(*TH)<<= n);}TE <uint M> CE Mod<M> Mod<M>::OP>>(int n)CO NE{RE MO(Mod<M>(*TH)>>= n);}TE <uint M> CE Mod<M> Mod<M
    >::OP-()CO NE{RE MO(Mod<M>(*TH).SignInvert());}TE <uint M> CE Mod<M>& Mod<M>::SignInvert()NE{RE Ref(m_n > 0?m_n = M - m_n:m_n);}TE <uint M> CE
    Mod<M>& Mod<M>::Double()NE{RE Ref(Normalise(m_n <<= 1));}TE <uint M> CE Mod<M>& Mod<M>::Halve()NE{RE Ref(((m_n & 1)== 0?m_n:m_n += M)>>= 1);}TE
    <uint M> IN Mod<M>& Mod<M>::Invert(){assert(m_n > 0);uint m_n_neg;RE m_n < COantsForMod<M>::g_memory_LE?Ref(m_n = Inverse(m_n).m_n):((m_n_neg = M
    - m_n)< COantsForMod<M>::g_memory_LE)?Ref(m_n = M - Inverse(m_n_neg).m_n):PositivePW(uint(COantsForMod<M>::g_M_minus_2));}TE <> IN Mod<2>& Mod<2
    >::Invert(){assert(m_n > 0);RE *TH;}TE <uint M> TE <TY T> CE Mod<M>& Mod<M>::PositivePW(T&& EX)NE{Mod<M> PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?OP
    *=(PW):*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <> TE <TY T> CE Mod<2>& Mod<2>::PositivePW(T&& EX)NE{RE *TH;}TE <uint M> TE <TY T> CE Mod<M>& Mod<M
    >::NonNegativePW(T&& EX)NE{RE EX == 0?Ref(m_n = 1):Ref(PositivePW(forward<T>(EX)));}TE <uint M> TE <TY T> CE Mod<M>& Mod<M>::PW(T&& EX){bool neg
    = EX < 0;assert(!(neg && Mod<M>::m_n == 0));RE neg?PositivePW(forward<T>(EX *= COantsForMod<M>::g_M_minus_2_neg)):NonNegativePW(forward<T>(EX
    ));}TE <uint M> IN CO Mod<M>& Mod<M>::Inverse(CRUI n)NE{ST Mod<M> memory[COantsForMod<M>::g_memory_LE] ={zero(),one()};ST uint LE_curr = 2;WH
    (LE_curr <= n){memory[LE_curr].m_n = M - MN<M>::MU(memory[M % LE_curr].m_n,M / LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M
    >::Factorial(CRUI n)NE{ST Mod<M> memory[COantsForMod<M>::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = MN<M
    >::Factorial(LE_curr).Reduce();LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::FactorialInverse(CRUI n)NE{ST Mod<M>
    memory[COantsForMod<M>::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = MN<M>::FactorialInverse(LE_curr
    ).Reduce();LE_curr++;}RE memory[n];}TE <uint M> IN Mod<M> Mod<M>::Combination(CRUI n,CRUI i)NE{RE MN<M>::Combination(n,i).Reduce();}TE <uint M>
    CE VO Mod<M>::swap(Mod<M>& n)NE{std::swap(m_n,n.m_n);}TE <uint M> CE CRUI Mod<M>::RP()CO NE{RE m_n;}TE <uint M> CE Mod<M> Mod<M>::DeRP(CRUI n
    )NE{Mod<M> n_copy{};n_copy.m_n = n;RE n_copy;}TE <uint M> CE uint& Mod<M>::Normalise(uint& n)NE{RE n < M?n:n -= M;}TE <uint M> IN CO Mod<M>& Mod
    <M>::zero()NE{ST CE CO Mod<M> z{};RE z;}TE <uint M> IN CO Mod<M>& Mod<M>::one()NE{ST CE CO Mod<M> o{DeRP(1)};RE o;}TE <uint M> TE <TY T> CE Mod<M
    >& Mod<M>::Ref(T&& n)NE{RE *TH;}TE <uint M> CE Mod<M> Twice(CO Mod<M>& n)NE{RE MO(Mod<M>(n).Double());}TE <uint M> CE Mod<M> Half(CO Mod<M>& n
    )NE{RE MO(Mod<M>(n).Halve());}TE <uint M> IN Mod<M> Inverse(CO Mod<M>& n){RE MO(Mod<M>(n).Invert());}TE <uint M> CE Mod<M> Inverse_COrexpr(CRUI n
    )NE{RE MO(Mod<M>::DeRP(RS<M>(n)).NonNegativePW(M - 2));}TE <uint M,TY T> CE Mod<M> PW(Mod<M> n,T EX){RE MO(n.PW(EX));}TE <TY T>CE Mod<2> PW(Mod<2
    > n,CO T& p){RE p == 0?Mod<2>::one():MO(n);}TE <uint M> CE VO swap(Mod<M>& n0,Mod<M>& n1)NE{n0.swap(n1);}TE <uint M> IN string to_string(CO Mod<M
    >& n)NE{RE to_string(n.RP())+ " + MZ";}TE<uint M,CL Traits> IN basic_istream<char,Traits>& OP>>(basic_istream<char,Traits>& is,Mod<M>& n){ll m;is
    >> m;n = m;RE is;}TE<uint M,CL Traits> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO Mod<M>& n){RE os << n.RP();}
// AAA
#define INCLUDE_LIBRARY
#include __FILE__
#endif // INCLUDE_LIBRARY
#endif // INCLUDE_SUB
#endif // INCLUDE_MAIN
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0