結果
| 問題 |
No.2616 中央番目の中央値
|
| コンテスト | |
| ユーザー |
Re0denX
|
| 提出日時 | 2024-01-27 18:54:24 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 68 ms / 2,000 ms |
| コード長 | 5,538 bytes |
| コンパイル時間 | 1,921 ms |
| コンパイル使用メモリ | 197,104 KB |
| 最終ジャッジ日時 | 2025-02-19 00:28:27 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 37 |
ソースコード
#include <bits/stdc++.h>
#ifdef LOCAl
#include "../library/misc/debug.h"
#else
#define debug(...) 42
#endif // LOCAL
using namespace std;
template <class T> struct Combina {
int n;
std::vector<T> fact, invfact;
Combina() {}
Combina(int _n) : n(_n), fact(_n + 1), invfact(_n + 1) {
fact[0] = 1;
for (int i = 1; i <= n; i++)
fact[i] = fact[i - 1] * i;
invfact[n] = 1 / fact[n];
for (int i = n; i >= 1; i--)
invfact[i - 1] = invfact[i] * i;
}
T binom(int a, int b) {
if (a < b || b < 0)
return 0;
return fact[a] * invfact[b] * invfact[a - b];
}
long long lucas(long long n, long long m, long long p) {
if (n > 0 || m > 0)
return lucas(n / p, m / p, p) * lucas(n % p, m % p, p) % p;
else
return 1ll;
}
};
template <typename T> T mod_inv_in_range(T a, T m) {
// assert(0 <= a && a < m);
T x = a, y = m;
// coeff of a in x and y
T vx = 1, vy = 0;
while (x) {
T k = y / x;
y %= x;
vy -= k * vx;
std::swap(x, y);
std::swap(vx, vy);
}
assert(y == 1);
return vy < 0 ? m + vy : vy;
}
template <typename T> struct extended_gcd_result {
T gcd;
T coeff_a, coeff_b;
};
template <typename T> extended_gcd_result<T> extended_gcd(T a, T b) {
T x = a, y = b;
// coeff of a and b in x and y
T ax = 1, ay = 0;
T bx = 0, by = 1;
while (x) {
T k = y / x;
y %= x;
ay -= k * ax;
by -= k * bx;
std::swap(x, y);
std::swap(ax, ay);
std::swap(bx, by);
}
return {y, ay, by};
}
template <typename T> T mod_inv(T a, T m) {
a %= m;
a = a < 0 ? a + m : a;
return mod_inv_in_range(a, m);
}
template <int MOD_> struct modnum {
static constexpr int MOD = MOD_;
static_assert(MOD_ > 0, "MOD must be positive");
private:
int v;
public:
modnum() : v(0) {}
modnum(int64_t v_) : v(int(v_ % MOD)) { if (v < 0) v += MOD; }
explicit operator int() const { return v; }
friend std::ostream& operator << (std::ostream& out, const modnum& n) { return out << int(n); }
friend std::istream& operator >> (std::istream& in, modnum& n) { int64_t v_; in >> v_; n = modnum(v_); return in; }
friend bool operator == (const modnum& a, const modnum& b) { return a.v == b.v; }
friend bool operator != (const modnum& a, const modnum& b) { return a.v != b.v; }
modnum inv() const {
modnum res;
res.v = mod_inv_in_range(v, MOD);
return res;
}
friend modnum inv(const modnum& m) { return m.inv(); }
modnum neg() const {
modnum res;
res.v = v ? MOD-v : 0;
return res;
}
friend modnum neg(const modnum& m) { return m.neg(); }
modnum operator- () const {
return neg();
}
modnum operator+ () const {
return modnum(*this);
}
modnum& operator ++ () {
v ++;
if (v == MOD) v = 0;
return *this;
}
modnum& operator -- () {
if (v == 0) v = MOD;
v --;
return *this;
}
modnum& operator += (const modnum& o) {
v -= MOD-o.v;
v = (v < 0) ? v + MOD : v;
return *this;
}
modnum& operator -= (const modnum& o) {
v -= o.v;
v = (v < 0) ? v + MOD : v;
return *this;
}
modnum& operator *= (const modnum& o) {
v = int(int64_t(v) * int64_t(o.v) % MOD);
return *this;
}
modnum& operator /= (const modnum& o) {
return *this *= o.inv();
}
friend modnum operator ++ (modnum& a, int) { modnum r = a; ++a; return r; }
friend modnum operator -- (modnum& a, int) { modnum r = a; --a; return r; }
friend modnum operator + (const modnum& a, const modnum& b) { return modnum(a) += b; }
friend modnum operator - (const modnum& a, const modnum& b) { return modnum(a) -= b; }
friend modnum operator * (const modnum& a, const modnum& b) { return modnum(a) *= b; }
friend modnum operator / (const modnum& a, const modnum& b) { return modnum(a) /= b; }
};
template <typename T> T pow(T a, long long b) {
assert(b >= 0);
T r = 1; while (b) { if (b & 1) r *= a; b >>= 1; a *= a; } return r;
}
// @param 0-indexed Fenwick (binary indexed tree / Fenwick tree) (i : [0, len))
template <class T> struct Fenwick {
int n;
std::vector<T> data;
Fenwick(int len = 0) : n(len), data(len) {}
void reset() { std::fill(data.begin(), data.end(), T(0)); }
void add(int pos, T v) { // a[pos] += v
pos++;
while (pos > 0 && pos <= n) data[pos - 1] += v, pos += pos & -pos;
}
T sum(int k) const { // a[0] + ... + a[k - 1]
T res = 0;
while (k > 0) res += data[k - 1], k -= k & -k;
return res;
}
T sum(int l, int r) const { return sum(r) - sum(l); } // a[l] + ... + a[r - 1]
int kth(T k) {
int ret = 0;
for (int i = 1 << std::__lg(n); i; i /= 2)
if (ret + i <= n && k >= data[ret + i - 1])
ret += i, k -= data[ret - 1];
return ret;
}
template <class OStream> friend OStream &operator<<(OStream &os, const Fenwick &bit) {
T prv = 0;
os << '[';
for (int i = 1; i <= bit.n; i++) {
T now = bit.sum(i);
os << now - prv << ',', prv = now;
}
return os << ']';
}
};
int main() {
std::cin.tie(nullptr)->sync_with_stdio(false);
using num = modnum<998244353>;
int N; std::cin >> N;
std::vector<int> P(N);
for (auto &x : P) std::cin >> x, x--;
Fenwick<int> ft(N);
num ans = 0;
Combina<num> comb(N * 2);
for (int i = 0; i < N; i++) {
int A = ft.sum(0, P[i]);
int B = i - A;
int C = N - i - 1 - P[i] + A;
int D = P[i] - A;
assert(A + B + C + D == N - 1);
ans += comb.binom(A + C, A) * comb.binom(B + D, B);
ft.add(P[i], 1);
}
std::cout << ans << "\n";
}
Re0denX