結果
| 問題 |
No.2616 中央番目の中央値
|
| コンテスト | |
| ユーザー |
Re0denX
|
| 提出日時 | 2024-01-27 19:47:25 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 63 ms / 2,000 ms |
| コード長 | 8,963 bytes |
| コンパイル時間 | 1,930 ms |
| コンパイル使用メモリ | 197,552 KB |
| 最終ジャッジ日時 | 2025-02-19 00:28:41 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 37 |
ソースコード
#include <bits/stdc++.h>
#ifdef LOCAl
#include "../library/misc/debug.h"
#else
#define debug(...) 42
#endif // LOCAL
using namespace std;
template <class T> struct Combina {
int n;
std::vector<T> fact, invfact;
Combina() {}
Combina(int _n) : n(_n), fact(_n + 1), invfact(_n + 1) {
fact[0] = 1;
for (int i = 1; i <= n; i++)
fact[i] = fact[i - 1] * i;
invfact[n] = 1 / fact[n];
for (int i = n; i >= 1; i--)
invfact[i - 1] = invfact[i] * i;
}
T binom(int a, int b) {
if (a < b || b < 0)
return 0;
return fact[a] * invfact[b] * invfact[a - b];
}
long long lucas(long long n, long long m, long long p) {
if (n > 0 || m > 0)
return lucas(n / p, m / p, p) * lucas(n % p, m % p, p) % p;
else
return 1ll;
}
};
template <typename T> T mod_inv_in_range(T a, T m) {
// assert(0 <= a && a < m);
T x = a, y = m;
// coeff of a in x and y
T vx = 1, vy = 0;
while (x) {
T k = y / x;
y %= x;
vy -= k * vx;
std::swap(x, y);
std::swap(vx, vy);
}
assert(y == 1);
return vy < 0 ? m + vy : vy;
}
template <typename T> struct extended_gcd_result {
T gcd;
T coeff_a, coeff_b;
};
template <typename T> extended_gcd_result<T> extended_gcd(T a, T b) {
T x = a, y = b;
// coeff of a and b in x and y
T ax = 1, ay = 0;
T bx = 0, by = 1;
while (x) {
T k = y / x;
y %= x;
ay -= k * ax;
by -= k * bx;
std::swap(x, y);
std::swap(ax, ay);
std::swap(bx, by);
}
return {y, ay, by};
}
template <typename T> T mod_inv(T a, T m) {
a %= m;
a = a < 0 ? a + m : a;
return mod_inv_in_range(a, m);
}
template <int MOD_> struct modnum {
static constexpr int MOD = MOD_;
static_assert(MOD_ > 0, "MOD must be positive");
private:
int v;
public:
modnum() : v(0) {}
modnum(int64_t v_) : v(int(v_ % MOD)) { if (v < 0) v += MOD; }
explicit operator int() const { return v; }
friend std::ostream& operator << (std::ostream& out, const modnum& n) { return out << int(n); }
friend std::istream& operator >> (std::istream& in, modnum& n) { int64_t v_; in >> v_; n = modnum(v_); return in; }
friend bool operator == (const modnum& a, const modnum& b) { return a.v == b.v; }
friend bool operator != (const modnum& a, const modnum& b) { return a.v != b.v; }
modnum inv() const {
modnum res;
res.v = mod_inv_in_range(v, MOD);
return res;
}
friend modnum inv(const modnum& m) { return m.inv(); }
modnum neg() const {
modnum res;
res.v = v ? MOD-v : 0;
return res;
}
friend modnum neg(const modnum& m) { return m.neg(); }
modnum operator- () const {
return neg();
}
modnum operator+ () const {
return modnum(*this);
}
modnum& operator ++ () {
v ++;
if (v == MOD) v = 0;
return *this;
}
modnum& operator -- () {
if (v == 0) v = MOD;
v --;
return *this;
}
modnum& operator += (const modnum& o) {
v -= MOD-o.v;
v = (v < 0) ? v + MOD : v;
return *this;
}
modnum& operator -= (const modnum& o) {
v -= o.v;
v = (v < 0) ? v + MOD : v;
return *this;
}
modnum& operator *= (const modnum& o) {
v = int(int64_t(v) * int64_t(o.v) % MOD);
return *this;
}
modnum& operator /= (const modnum& o) {
return *this *= o.inv();
}
friend modnum operator ++ (modnum& a, int) { modnum r = a; ++a; return r; }
friend modnum operator -- (modnum& a, int) { modnum r = a; --a; return r; }
friend modnum operator + (const modnum& a, const modnum& b) { return modnum(a) += b; }
friend modnum operator - (const modnum& a, const modnum& b) { return modnum(a) -= b; }
friend modnum operator * (const modnum& a, const modnum& b) { return modnum(a) *= b; }
friend modnum operator / (const modnum& a, const modnum& b) { return modnum(a) /= b; }
};
template <typename T> T pow(T a, long long b) {
assert(b >= 0);
T r = 1; while (b) { if (b & 1) r *= a; b >>= 1; a *= a; } return r;
}
/** Binary-indexed tree
*
* A binary indexed tree with N nodes of type T provides the
* following two functions for 0 <= i <= N:
*
* prefix(int i) -> prefix_iterator<T>
* suffix(int i) -> suffix_iterator<T>
*
* such that size(suffix(i) intersect prefix(j)) = (1 if i < j else 0).
* Furthermore, the resulting lists always have size at most log_2(N).
*
* This can be used to implement either point-update/(prefix|suffix)-query or
* (prefix|suffix)-update/point-query over a virtual array of size N of a
* commutative monoid. This can be generalized to implement
* point-update/range-query or range-update/point-query over a virtual array
* of size N of a commutative group.
*
* With 0-indexed data, prefixes are more natural:
* * For range update/query, use for_prefix for the ranges and for_suffix for the points.
* * For prefix update/query, no change.
* * For suffix update/query, use for_prefix(point + 1); 1-index the data.
*/
template <typename T> class binary_indexed_tree {
private:
std::vector<T> dat;
public:
binary_indexed_tree() {}
explicit binary_indexed_tree(size_t N) : dat(N) {}
binary_indexed_tree(size_t N, const T& t) : dat(N, t) {}
size_t size() const { return dat.size(); }
const std::vector<T>& data() const { return dat; }
std::vector<T>& data() { return dat; }
private:
template <typename I, typename S = I> struct iterator_range {
private:
I begin_;
S end_;
public:
iterator_range() : begin_(), end_() {}
iterator_range(const I& begin__, const S& end__) : begin_(begin__), end_(end__) {}
iterator_range(I&& begin__, S&& end__) : begin_(begin__), end_(end__) {}
I begin() const { return begin_; }
S end() const { return end_; }
};
public:
class const_suffix_iterator {
private:
const T* dat;
int a;
const_suffix_iterator(const T* dat_, int a_) : dat(dat_), a(a_) {}
friend class binary_indexed_tree;
public:
friend bool operator != (const const_suffix_iterator& i, const const_suffix_iterator& j) {
assert(j.dat == nullptr);
return i.a < j.a;
}
const_suffix_iterator& operator ++ () {
a |= a+1;
return *this;
}
const T& operator * () const {
return dat[a];
}
};
using const_suffix_range = iterator_range<const_suffix_iterator>;
const_suffix_range suffix(int a) const {
assert(0 <= a && a <= int(dat.size()));
return const_suffix_range{const_suffix_iterator{dat.data(), a}, const_suffix_iterator{nullptr, int(dat.size())}};
}
class suffix_iterator {
private:
T* dat;
int a;
suffix_iterator(T* dat_, int a_) : dat(dat_), a(a_) {}
friend class binary_indexed_tree;
public:
friend bool operator != (const suffix_iterator& i, const suffix_iterator& j) {
assert(j.dat == nullptr);
return i.a < j.a;
}
suffix_iterator& operator ++ () {
a |= a+1;
return *this;
}
T& operator * () const {
return dat[a];
}
};
using suffix_range = iterator_range<suffix_iterator>;
suffix_range suffix(int a) {
assert(0 <= a && a <= int(dat.size()));
return suffix_range{suffix_iterator{dat.data(), a}, suffix_iterator{nullptr, int(dat.size())}};
}
class const_prefix_iterator {
private:
const T* dat;
int a;
const_prefix_iterator(const T* dat_, int a_) : dat(dat_), a(a_) {}
friend class binary_indexed_tree;
public:
friend bool operator != (const const_prefix_iterator& i, const const_prefix_iterator& j) {
assert(j.dat == nullptr);
return i.a > 0;
}
const_prefix_iterator& operator ++ () {
a &= a-1;
return *this;
}
const T& operator * () const {
return dat[a-1];
}
};
using const_prefix_range = iterator_range<const_prefix_iterator>;
const_prefix_range prefix(int a) const {
return const_prefix_range{const_prefix_iterator{dat.data(), a}, const_prefix_iterator{nullptr, 0}};
}
class prefix_iterator {
private:
T* dat;
int a;
prefix_iterator(T* dat_, int a_) : dat(dat_), a(a_) {}
friend class binary_indexed_tree;
public:
friend bool operator != (const prefix_iterator& i, const prefix_iterator& j) {
assert(j.dat == nullptr);
return i.a > 0;
}
prefix_iterator& operator ++ () {
a &= a-1;
return *this;
}
T& operator * () const {
return dat[a-1];
}
};
using prefix_range = iterator_range<prefix_iterator>;
prefix_range prefix(int a) {
return prefix_range{prefix_iterator{dat.data(), a}, prefix_iterator{nullptr, 0}};
}
};
int main() {
std::cin.tie(nullptr)->sync_with_stdio(false);
using num = modnum<998244353>;
int N; std::cin >> N;
std::vector<int> P(N);
for (auto &x : P) std::cin >> x, x--;
binary_indexed_tree<int> bit(N);
num ans = 0;
Combina<num> comb(N * 2);
for (int i = 0; i < N; i++) {
int A = 0;
for (auto &x : bit.prefix(P[i] + 1)) A += x;
int B = i - A;
int C = N - i - 1 - P[i] + A;
int D = P[i] - A;
assert(A + B + C + D == N - 1);
ans += comb.binom(A + C, A) * comb.binom(B + D, B);
// ft.add(P[i], 1);
for (auto &x : bit.suffix(P[i])) x++;
}
std::cout << ans << "\n";
}
Re0denX