結果
問題 | No.2697 Range LIS Query |
ユーザー |
👑 |
提出日時 | 2024-02-06 14:03:47 |
言語 | Nim (2.2.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 16,557 bytes |
コンパイル時間 | 2,062 ms |
コンパイル使用メモリ | 91,776 KB |
最終ジャッジ日時 | 2024-09-28 12:36:18 |
合計ジャッジ時間 | 2,699 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
SIGSEGV: Illegal storage access. (Attempt to read from nil?)
ソースコード
import macros;macro ImportExpand(s:untyped):untyped = parseStmt($s[2]){.checks: off.}ImportExpand "cplib/tmpl/citrus.nim" <=== "when not declared CPLIB_TMPL_CITRUS:\n const CPLIB_TMPL_CITRUS* = 1\n {.warning[UnusedImport]: off.}\n {.hint[XDeclaredButNotUsed]: off.}\n import os\n import algorithm\n import sequtils\n import tables\n import macros\nimport std/math\n import sets\n import strutils\n import strformat\n import sugar\n import streams\n import deques\n importbitops\n import heapqueue\n import options\n const MODINT998244353* = 998244353\n const MODINT1000000007* = 1000000007\n const INF*= 100100111\n const INFL* = int(3300300300300300491)\n type double* = float64\n let readNext = iterator(getsChar: bool = false): string {.closure.} =\n while true:\n var si: string\n try: si = stdin.readLine\n except EOFError: yield \"\"\nfor s in si.split:\n if getsChar:\n for i in 0..<s.len():\n yield s[i..i]\nelse:\n if s.isEmptyOrWhitespace: continue\n yield s\n proc input*(t: typedesc[string]): string= readNext()\n proc input*(t: typedesc[char]): char = readNext(true)[0]\n proc input*(t: typedesc[int]): int = readNext().parseInt\n procinput*(t: typedesc[float]): float = readNext().parseFloat\n macro input*(t: typedesc, n: varargs[int]): untyped =\n var repStr = \"\"\nfor arg in n:\n repStr &= &\"({arg.repr}).newSeqWith \"\n parseExpr(&\"{repStr}input({t})\")\n macro input*(ts:varargs[auto]): untyped =\n var tupStr = \"\"\n for t in ts:\n tupStr &= &\"input({t.repr}),\"\n parseExpr(&\"({tupStr})\")\n macro input*(n: int, ts: varargs[auto]): untyped =\n for typ in ts:\n if typ.typeKind != ntyAnything:\nerror(\"Expected typedesc, got \" & typ.repr, typ)\n parseExpr(&\"({n.repr}).newSeqWith input({ts.repr})\")\n proc `fmtprint`*(x: int or string or char or bool): string = return $x\n proc `fmtprint`*(x: float or float32 or float64): string = return &\"{x:.16f}\"\nproc `fmtprint`*[T](x: seq[T] or Deque[T] or HashSet[T] or set[T]): string = return x.toSeq.join(\" \")\n proc `fmtprint`*[T, N](x: array[T, N]): string = return x.toSeq.join(\" \")\n proc `fmtprint`*[T](x: HeapQueue[T]): string =\n var q = x\n while q.len != 0:\nresult &= &\"{q.pop()}\"\n if q.len != 0: result &= \" \"\n proc `fmtprint`*[T](x: CountTable[T]): string =\n result = x.pairs.toSeq.mapIt(&\"{it[0]}: {it[1]}\").join(\" \")\n proc `fmtprint`*[K, V](x: Table[K, V]): string =\n result = x.pairs.toSeq.mapIt(&\"{it[0]}: {it[1]}\").join(\" \")\n proc print*(prop: tuple[f: File, sepc: string, endc: string, flush: bool], args: varargs[string,`fmtprint`]) =\n for i in 0..<len(args):\n prop.f.write(&\"{args[i]}\")\n if i != len(args) - 1: prop.f.write(prop.sepc) else: prop.f.write(prop.endc)\n if prop.flush: prop.f.flushFile()\n proc print*(args: varargs[string, `fmtprint`]) = print((f:stdout, sepc: \" \", endc: \"\\n\", flush: false), args)\n const LOCAL_DEBUG{.booldefine.} = false\n macro getSymbolName(x: typed): string =x.toStrLit\n macro debug*(args: varargs[untyped]): untyped =\n when LOCAL_DEBUG:\n result = newNimNode(nnkStmtList, args)\ntemplate prop(e: string = \"\"): untyped = (f: stderr, sepc: \"\", endc: e, flush: true)\n for i, arg in args:\nif arg.kind == nnkStrLit:\n result.add(quote do: print(prop(), \"\\\"\", `arg`, \"\\\"\"))\n else:\nresult.add(quote do: print(prop(\": \"), getSymbolName(`arg`)))\n result.add(quote do: print(prop(), `arg`))\nif i != args.len - 1: result.add(quote do: print(prop(), \", \"))\n else: result.add(quote do: print(prop(), \"\\n\"))\nelse:\n return (quote do: discard)\n proc `%`*(x: SomeInteger, y: SomeInteger): int = (result = x mod y; if result < 0:result += y)\n proc `//`*(x: SomeInteger, y: SomeInteger): int = (result = x div y; if result * y > x: result -= 1)\n proc `^`*(x:SomeInteger, y: SomeInteger): int = x xor y\n proc `&`*(x: SomeInteger, y: SomeInteger): int = x and y\n proc `|`*(x: SomeInteger, y:SomeInteger): int = x or y\n proc `>>`*(x: SomeInteger, y: SomeInteger): int = x shr y\n proc `<<`*(x: SomeInteger, y: SomeInteger): int = xshl y\n proc `%=`*(x: var SomeInteger, y: SomeInteger): void = x = x % y\n proc `//=`*(x: var SomeInteger, y: SomeInteger): void = x = x //y\n proc `^=`*(x: var SomeInteger, y: SomeInteger): void = x = x ^ y\n proc `&=`*(x: var SomeInteger, y: SomeInteger): void = x = x & y\nproc `|=`*(x: var SomeInteger, y: SomeInteger): void = x = x | y\n proc `>>=`*(x: var SomeInteger, y: SomeInteger): void = x = x >> y\nproc `<<=`*(x: var SomeInteger, y: SomeInteger): void = x = x << y\n proc `[]`*(x, n: int): bool = (x and (1 shl n)) != 0\n proc `[]=`*(x:var int, n: int, i: bool) =\n if i: x = x or (1 << n)\n else: (if x[n]: x = x xor (1 << n))\n proc pow*(a, n: int, m = INFL): int=\n var\n rev = 1\n a = a\n n = n\n while n > 0:\n if n % 2 != 0: rev = (rev * a) modm\n if n > 1: a = (a * a) mod m\n n >>= 1\n return rev\n proc sqrt*(x: int): int =\n assert(x >= 0)\nresult = int(sqrt(float64(x)))\n while result * result > x: result -= 1\n while (result+1) * (result+1) <= x: result += 1\nproc chmax*[T](x: var T, y: T): bool {.discardable.} = (if x < y: (x = y; return true; ) return false)\n proc chmin*[T](x: var T, y: T): bool {.discardable.} = (if x > y: (x = y; return true; ) return false)\n proc `max=`*[T](x: var T, y: T) = x = max(x, y)\n proc `min=`*[T](x: varT, y: T) = x = min(x, y)\n proc at*(x: char, a = '0'): int = int(x) - int(a)\n converter tofloat*(n: int): float = float(n)\n proc Yes*(b: bool = true): void = print(if b: \"Yes\" else: \"No\")\n proc No*(b: bool = true): void = Yes(not b)\n proc YES_upper*(b: bool = true):void = print(if b: \"YES\" else: \"NO\")\n proc NO_upper*(b: bool = true): void = Yes_upper(not b)\n const DXY* = [(0, -1), (0, 1), (-1, 0),(1, 0)]\n const DDXY* = [(1, -1), (1, 0), (1, 1), (0, -1), (0, 1), (-1, -1), (-1, 0), (-1, 1)]\n macro exit*(statement: untyped): untyped =(quote do: (`statement`; quit()))\n"ImportExpand "atcoder/lazysegtree.nim" <=== "when not declared ATCODER_LAZYSEGTREE_HPP:\n const ATCODER_LAZYSEGTREE_HPP* = 1\n \n #[ import atcoder/internal_bit ]#\n when not declared ATCODER_INTERNAL_BITOP_HPP:\n const ATCODER_INTERNAL_BITOP_HPP* = 1\n import std/bitops\n \n #ifdef_MSC_VER\n #include <intrin.h>\n #endif\n \n # @param n `0 <= n`\n # @return minimum non-negative `x` s.t. `n <= 2**x`\n proc ceil_pow2*(n:SomeInteger):int =\n var x = 0\n while (1.uint shl x) < n.uint: x.inc\n return x\n # @param n `1 <= n`\n # @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`\n proc bsf*(n:SomeInteger):int =\n return countTrailingZeroBits(n)\n #[ import atcoder/rangeutils ]#\n when not declared ATCODER_RANGEUTILS_HPP:\n const ATCODER_RANGEUTILS_HPP* = 1\n type RangeType* = Slice[int] | HSlice[int,BackwardsIndex] | Slice[BackwardsIndex]\n type IndexType* = int | BackwardsIndex\n template halfOpenEndpoints*(p:Slice[int]):(int,int) = (p.a, p.b + 1)\n template `^^`*(s, i: untyped): untyped =\n (when i is BackwardsIndex: s.len - int(i) else: int(i))\n templatehalfOpenEndpoints*[T](s:T, p:RangeType):(int,int) =\n (s^^p.a, s^^p.b + 1)\n import std/sequtils\n import std/algorithm\n {.push inline.}\n type LazySegTree*[S,F;p:static[tuple]] = object\n len*, size*, log*:int\n d*:seq[S]\n lz*:seq[F]\n\n template calc_op*[ST:LazySegTree](self:ST or typedesc[ST], a, b:ST.S):auto =\n block:\n let u = ST.p.op(a, b)\n u\n template calc_e*[ST:LazySegTree](self:ST or typedesc[ST]):auto =\n block:\n let u = ST.p.e()\n u\n template calc_mapping*[ST:LazySegTree](self:ST or typedesc[ST], a:ST.F, b:ST.S):auto =\n block:\n let u = ST.p.mapping(a, b)\n u\n template calc_composition*[ST:LazySegTree](self:ST or typedesc[ST], a, b:ST.F):auto =\n block:\n # こう書かないとバグる事象を検出\n let u = ST.p.composition(a, b)\n u\n template calc_id*[ST:LazySegTree](self:ST or typedesc[ST]):auto =\n block:\n let u = ST.p.id()\n u\n\n proc update[ST:LazySegTree](self:var ST, k:int)=\n self.d[k] = ST.calc_op(self.d[2 * k], self.d[2 * k + 1])\n proc all_apply*[ST:LazySegTree](self:var ST, k:int, f:ST.F) =\n self.d[k] =ST.calc_mapping(f, self.d[k])\n if k < self.size:\n self.lz[k] = ST.calc_composition(f, self.lz[k])\n proc all_apply*[ST:LazySegTree](self:var ST, f:ST.F) =\n self.all_apply(1, f)\n proc push*[ST:LazySegTree](self: var ST, k:int) =\n self.all_apply(2 * k, self.lz[k])\nself.all_apply(2 * k + 1, self.lz[k])\n self.lz[k] = ST.calc_id()\n\n proc init[ST:LazySegTree](self:var ST, v:seq[ST.S]) =\n let\n n= v.len\n log = ceil_pow2(n)\n size = 1 shl log\n (self.len, self.size, self.log) = (n, size, log)\n if self.d.len < 2 * size:\nself.d = newSeqWith(2 * size, ST.calc_e())\n else:\n self.d.fill(0, 2 * size - 1, ST.calc_e())\n for i in 0..<n:\n self.d[size+ i] = v[i]\n if self.lz.len < size:\n self.lz = newSeqWith(size, ST.calc_id())\n else:\n self.lz.fill(0, size - 1, ST.calc_id())\n for i in countdown(size - 1, 1): self.update(i)\n proc init*[ST:LazySegTree](self: var ST, n:int) = self.init(newSeqWith(n, ST.calc_e()))\n proc init*[ST:LazySegTree](self: typedesc[ST], v:seq[ST.S] or int):ST = result.init(v)\n\n template LazySegTreeType[S, F](op0, e0,mapping0, composition0, id0:untyped):typedesc[LazySegTree] =\n proc op1(a, b:S):S {.gensym inline.} = op0(a, b)\n proc e1():S {.gensyminline.} = e0()\n proc mapping1(f:F, s:S):S {.gensym inline.} = mapping0(f, s)\n proc composition1(f1, f2:F):F {.gensym inline.} =composition0(f1, f2)\n proc id1():F {.gensym inline.} = id0()\n LazySegTree[S, F, (op:op1, e:e1, mapping:mapping1, composition:composition1,id:id1)]\n\n template getType*(ST:typedesc[LazySegTree], S, F:typedesc, op, e, mapping, composition, id:untyped):typedesc[LazySegTree] =\nLazySegTreeType[S, F](op, e, mapping, composition, id)\n\n template initLazySegTree*[S, F](v:seq[S] or int, op, e, mapping, composition, id:untyped):auto =\n LazySegTreeType[S, F](op, e, mapping, composition, id).init(v)\n\n proc set*[ST:LazySegTree](self: var ST, p:IndexType, x:ST.S) =\n var p = self^^p\n assert p in 0..<self.len\n p += self.size\n for i in countdown(self.log, 1): self.push(p shr i)\n self.d[p] = x\n for i in 1..self.log: self.update(p shr i)\n\n proc get*[ST:LazySegTree](self: var ST, p:IndexType):ST.S =\n var p = self^^p\nassert p in 0..<self.len\n p += self.size\n for i in countdown(self.log, 1): self.push(p shr i)\n return self.d[p]\n\n proc `[]=`*[ST:LazySegTree](self: var ST, p:IndexType, x:ST.S) = self.set(p, x)\n proc `[]`*[ST:LazySegTree](self: var ST, p:IndexType):ST.S = self.get(p)\n\nproc prod*[ST:LazySegTree](self:var ST, p:RangeType):ST.S =\n var (l, r) = self.halfOpenEndpoints(p)\n assert 0 <= l and l <= r and r <=self.len\n if l == r: return ST.calc_e()\n\n l += self.size\n r += self.size\n\n for i in countdown(self.log, 1):\n if ((l shr i)shl i) != l: self.push(l shr i)\n if ((r shr i) shl i) != r: self.push(r shr i)\n\n var sml, smr = ST.calc_e()\n while l < r:\n if(l and 1) != 0: sml = ST.calc_op(sml, self.d[l]);l.inc\n if (r and 1) != 0: r.dec;smr = ST.calc_op(self.d[r], smr)\n l = l shr 1\nr = r shr 1\n return ST.calc_op(sml, smr)\n\n proc `[]`*[ST:LazySegTree](self: var ST, p:RangeType):ST.S = self.prod(p)\n\n proc all_prod*[ST:LazySegTree](self:ST):auto = self.d[1]\n\n proc apply*[ST:LazySegTree](self: var ST, p:IndexType, f:ST.F) =\n var p = self^^p\n assert pin 0..<self.len\n p += self.size\n for i in countdown(self.log, 1): self.push(p shr i)\n self.d[p] = ST.calc_mapping(f, self.d[p])\nfor i in 1..self.log: self.update(p shr i)\n proc apply*[ST:LazySegTree](self: var ST, p:RangeType, f:ST.F) =\n var (l, r) = self.halfOpenEndpoints(p)\n assert 0 <= l and l <= r and r <= self.len\n if l == r: return\n\n l += self.size\n r += self.size\n\n fori in countdown(self.log, 1):\n if ((l shr i) shl i) != l: self.push(l shr i)\n if ((r shr i) shl i) != r: self.push((r - 1) shr i)\n\nblock:\n var (l, r) = (l, r)\n while l < r:\n if (l and 1) != 0: self.all_apply(l, f);l.inc\n if (r and 1) != 0: r.dec;self.all_apply(r, f)\n l = l shr 1\n r = r shr 1\n\n for i in 1..self.log:\n if ((l shr i) shl i) != l: self.update(l shr i)\n if ((r shr i) shl i) != r: self.update((r - 1) shr i)\n\n# template <bool (*g)(S)> int max_right(int l) {\n# return max_right(l, [](Sx) { return g(x); });\n# }\n proc max_right*[ST:LazySegTree](self:var ST, l:IndexType, g:proc(s:ST.S):bool):int =\n var l = self^^l\nassert l in 0..self.len\n assert g(ST.calc_e())\n if l == self.len: return self.len\n l += self.size\n for i in countdown(self.log, 1): self.push(l shr i)\n var sm = ST.calc_e()\n while true:\n while l mod 2 == 0: l = l shr 1\n if not g(ST.calc_op(sm, self.d[l])):\n while l < self.size:\n self.push(l)\n l = (2 * l)\n if g(ST.calc_op(sm, self.d[l])):\n sm = ST.calc_op(sm, self.d[l])\n l.inc\n return l - self.size\n sm = ST.calc_op(sm, self.d[l])\n l.inc\n if not((l and-l) != l): break\n return self.len\n\n# template <bool (*g)(S)> int min_left(int r) {\n# return min_left(r, [](S x) { return g(x); });\n#}\n proc min_left*[ST:LazySegTree](self: var ST, r:IndexType, g:proc(s:ST.S):bool):int =\n var r = self^^r\n assert r in 0..self.len\nassert(g(ST.calc_e()))\n if r == 0: return 0\n r += self.size\n for i in countdown(self.log, 1): self.push((r - 1) shr i)\n var sm =ST.calc_e()\n while true:\n r.dec\n while r > 1 and r mod 2 == 1: r = r shr 1\n if not g(ST.calc_op(self.d[r], sm)):\nwhile r < self.size:\n self.push(r)\n r = (2 * r + 1)\n if g(ST.calc_op(self.d[r], sm)):\n sm = ST.calc_op(self.d[r], sm)\n r.dec\n return r + 1 - self.size\n sm = ST.calc_op(self.d[r], sm)\n if not ((r and -r) != r):break\n return 0\n {.pop.}\n"var lr = collect(newSeq):for i in 0..<4:for j in i..<4:(i, j)var lri = (block:(proc(): Table[(int, int), int] =for i, (l, r) in lr:result[(l, r)] = i)())proc op(x, y: (seq[int], int)): (seq[int], int) =var n = x[0].lenvar rseq = (0..<lr.len).toSeq.mapIt(max(x[0][it], y[0][it]))for i in 0..<lr.len:var (l, k) = lr[i]for r in k..<4:rseq[lri[(l, r)]].max = x[0][i] + y[0][lri[(k, r)]]return (rseq, x[1] + y[1])proc e(): (seq[int], int) = (newSeqWith(lr.len, 0), 0)proc mapping(f: int, x: (seq[int], int)): (seq[int], int) =if f == INFL: return xvar rseq = newSeqWith(lr.len, 0)for i in 0..<lr.len:var (l, r) = lr[i]if l <= f and r >= f:rseq[lri[(l, r)]] = x[1]return (rseq, x[1])proc composition(f, g: int): int = (if f == INFL: g else: f)proc id(): int = INFLvar n = input(int)var a = input(int, n).mapIt(it-1)var lseg = initLazySegTree[(seq[int], int), int](newSeqWith(n, (newSeqWith(lr.len, 0), 1)), op, e, mapping, composition, id)for i in 0..<n: lseg.apply(i..i, a[i])var q = input(int)for _ in 0..<q:var t = input(int)if t == 1:var l, r = input(int)print(lseg.prod(l-1..<r)[0].max)else:var l, r, x = input(int)lseg.apply(l-1..<r, x-1)