結果
| 問題 |
No.2602 Real Collider
|
| コンテスト | |
| ユーザー |
Re0denX
|
| 提出日時 | 2024-02-07 00:29:48 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 18,072 bytes |
| コンパイル時間 | 4,609 ms |
| コンパイル使用メモリ | 279,700 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-09-28 12:20:40 |
| 合計ジャッジ時間 | 18,724 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 65 WA * 13 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include <debug.h>
#else
#define debug(...) 42
#endif // LOCAL
struct ChronoTimer {
std::chrono::high_resolution_clock::time_point st;
ChronoTimer() { reset(); }
void reset() { st = std::chrono::high_resolution_clock::now(); }
std::chrono::milliseconds::rep elapsed() {
auto ed = std::chrono::high_resolution_clock::now();
return std::chrono::duration_cast<std::chrono::milliseconds>(ed - st)
.count();
}
};
/**
* @brief Scanner(高速入力)
*/
struct Scanner {
public:
explicit Scanner(FILE *fp) : fp(fp) {}
template <typename T, typename... E>
void read(T &t, E &...e) {
read_single(t);
read(e...);
}
private:
static constexpr size_t line_size = 1 << 16;
static constexpr size_t int_digits = 20;
char line[line_size + 1] = {};
FILE *fp = nullptr;
char *st = line;
char *ed = line;
void read() {}
static inline bool is_space(char c) { return c <= ' '; }
void reread() {
ptrdiff_t len = ed - st;
memmove(line, st, len);
char *tmp = line + len;
ed = tmp + fread(tmp, 1, line_size - len, fp);
*ed = 0;
st = line;
}
void skip_space() {
while (true) {
if (st == ed) reread();
while (*st && is_space(*st)) ++st;
if (st != ed) return;
}
}
template <typename T, enable_if_t<is_integral<T>::value, int> = 0>
void read_single(T &s) {
skip_space();
if (st + int_digits >= ed) reread();
bool neg = false;
if (is_signed<T>::value && *st == '-') {
neg = true;
++st;
}
typename make_unsigned<T>::type y = *st++ - '0';
while (*st >= '0') {
y = 10 * y + *st++ - '0';
}
s = (neg ? -y : y);
}
template <typename T, enable_if_t<is_same<T, string>::value, int> = 0>
void read_single(T &s) {
s = "";
skip_space();
while (true) {
char *base = st;
while (*st && !is_space(*st)) ++st;
s += string(base, st);
if (st != ed) return;
reread();
}
}
template <typename T>
void read_single(vector<T> &s) {
for (auto &d : s) read(d);
}
};
/**
* @brief Printer(高速出力)
*/
struct Printer {
public:
explicit Printer(FILE *fp) : fp(fp) {}
~Printer() { flush(); }
template <bool f = false, typename T, typename... E>
void write(const T &t, const E &...e) {
if (f) write_single(' ');
write_single(t);
write<true>(e...);
}
template <typename... T>
void writeln(const T &...t) {
write(t...);
write_single('\n');
}
void flush() {
fwrite(line, 1, st - line, fp);
st = line;
}
private:
FILE *fp = nullptr;
static constexpr size_t line_size = 1 << 16;
static constexpr size_t int_digits = 20;
char line[line_size + 1] = {};
char *st = line;
template <bool f = false>
void write() {}
void write_single(const char &t) {
if (st + 1 >= line + line_size) flush();
*st++ = t;
}
template <typename T, enable_if_t<is_integral<T>::value, int> = 0>
void write_single(T s) {
if (st + int_digits >= line + line_size) flush();
st += to_chars(st, st + int_digits, s).ptr - st;
}
void write_single(const string &s) {
for (auto &c : s) write_single(c);
}
void write_single(const char *s) {
while (*s != 0) write_single(*s++);
}
template <typename T>
void write_single(const vector<T> &s) {
for (size_t i = 0; i < s.size(); i++) {
if (i) write_single(' ');
write_single(s[i]);
}
}
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&...tail) {
printer.write(head);
if (sizeof...(Tail)) printer.write(' ');
print(forward<Tail>(tail)...);
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &...tail) {
scanner.read(head);
read(tail...);
}
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
long long __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
#include <bits/stdc++.h>
using namespace std;
namespace Geometry {
typedef long double db;
const db EPS = 1e-13;
// 判断数符号,负数返回-1,0返回0,正数返回1
inline int sign(db a) { return a < -EPS ? -1 : a > EPS; }
// 比较两数大小
inline int cmp(db a, db b) { return sign(a - b); }
// 点类,向量类
struct P {
// 点表示坐标,向量表示向量
db x, y;
P() {}
// 构造函数
P(db _x, db _y) : x(_x), y(_y) {}
// 向量加减乘除
P operator+(P p) { return {x + p.x, y + p.y}; }
P operator-(P p) { return {x - p.x, y - p.y}; }
P operator*(db d) { return {x * d, y * d}; }
P operator/(db d) { return {x / d, y / d}; }
// 比较字典序
bool operator<(P p) const {
int c = cmp(x, p.x);
if (c) {
return c == -1;
}
return cmp(y, p.y) == -1;
}
bool operator==(P o) const { return cmp(x, o.x) == 0 && cmp(y, o.y) == 0; }
// 点积
db dot(P p) { return x * p.x + y * p.y; }
// 叉积
db det(P p) { return x * p.y - y * p.x; }
// 点距离
db distTo(P p) { return (*this - p).abs(); }
db alpha() { return atan2(y, x); }
void read() { cin >> x >> y; }
void write() { cout << "(" << x << "," << y << ")" << endl; }
db abs() { return sqrt(abs2()); }
db abs2() { return x * x + y * y; }
P rot90() { return P(-y, x); }
P unit() { return *this / abs(); }
// 判断点在极角坐标系上半边还是下半边,极点和极轴也算上半边
int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }
// 向量旋转
P rot(db an) {
return {db(x * cos(an) - y * sin(an)), db(x * sin(an) + y * cos(an))};
}
};
// 线类,半平面类
struct L { // ps[0] -> ps[1]
P ps[2];
P &operator[](int i) { return ps[i]; }
P dir() { return ps[1] - ps[0]; }
L(P a, P b) {
ps[0] = a;
ps[1] = b;
}
bool include(P p) { return sign((ps[1] - ps[0]).det(p - ps[0])) > 0; }
L push() { // push eps outward
const double eps = 1e-8;
P delta = (ps[1] - ps[0]).rot90().unit() * eps;
return {ps[0] + delta, ps[1] + delta};
}
};
// 叉积
#define cross(p1, p2, p3) \
((p2.x - p1.x) * (p3.y - p1.y) - (p3.x - p1.x) * (p2.y - p1.y))
#define crossOp(p1, p2, p3) sign(cross(p1, p2, p3))
// 判断向量平行
bool chkLL(P p1, P p2, P q1, P q2) {
db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
return sign(a1 + a2) != 0;
}
// 求直线交点
P isLL(P p1, P p2, P q1, P q2) {
db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
return (p1 * a2 + p2 * a1) / (a1 + a2);
}
P isLL(L l1, L l2) { return isLL(l1[0], l1[1], l2[0], l2[1]); }
bool intersect(db l1, db r1, db l2, db r2) {
if (l1 > r1) {
swap(l1, r1);
}
if (l2 > r2) {
swap(l2, r2);
}
return !(cmp(r1, l2) == -1 || cmp(r2, l1) == -1);
}
// 判断线段相交,交在端点算不算分为严格不严格
bool isSS(P p1, P p2, P q1, P q2) {
return intersect(p1.x, p2.x, q1.x, q2.x) &&
intersect(p1.y, p2.y, q1.y, q2.y) &&
crossOp(p1, p2, q1) * crossOp(p1, p2, q2) <= 0 &&
crossOp(q1, q2, p1) * crossOp(q1, q2, p2) <= 0;
}
bool isSS_strict(P p1, P p2, P q1, P q2) {
return crossOp(p1, p2, q1) * crossOp(p1, p2, q2) < 0 &&
crossOp(q1, q2, p1) * crossOp(q1, q2, p2) < 0;
}
// 点在线段上判定
bool isMiddle(db a, db m, db b) {
return sign(a - m) == 0 || sign(b - m) == 0 || ((a < m) != (b < m));
}
bool isMiddle(P a, P m, P b) {
return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);
}
bool onSeg(P p1, P p2, P q) {
return crossOp(p1, p2, q) == 0 && isMiddle(p1, q, p2);
}
bool onSeg_strict(P p1, P p2, P q) {
return crossOp(p1, p2, q) == 0 &&
sign((q - p1).dot(p1 - p2)) * sign((q - p2).dot(p1 - p2)) < 0;
}
// 投影,反射,最近点
// 最近点是线段外一点到线段上的点的最短距离
P proj(P p1, P p2, P q) {
P dir = p2 - p1;
return p1 + dir * (dir.dot(q - p1) / dir.abs2());
}
P reflect(P p1, P p2, P q) { return proj(p1, p2, q) * 2 - q; }
db nearest(P p1, P p2, P q) {
if (p1 == p2) {
return p1.distTo(q);
}
P h = proj(p1, p2, q);
if (isMiddle(p1, h, p2)) {
return q.distTo(h);
}
return min(p1.distTo(q), p2.distTo(q));
}
// 线段距离
db disSS(P p1, P p2, P q1, P q2) {
if (isSS(p1, p2, q1, q2))
return 0;
return min(min(nearest(p1, p2, q1), nearest(p1, p2, q2)),
min(nearest(q1, q2, p1), nearest(q1, q2, p2)));
}
db rad(P p1, P p2) { return atan2l(p1.det(p2), p1.dot(p2)); }
db incircle(P p1, P p2, P p3) {
db A = p1.distTo(p2);
db B = p2.distTo(p3);
db C = p3.distTo(p1);
return sqrtl(A * B * C / (A + B + C));
}
// polygon
// 简单多边形的问题只有判断点在多边形内,和多边形面积简单,其他只做凸多边形
// 多边形面积
db area(vector<P> ps) {
db ret = 0;
int N = ps.size();
for (int i = 0; i < N; ++i) {
ret += ps[i].det(ps[(i + 1) % N]);
}
return ret / 2;
}
// 2:inside,1:on_seg,0:outside
// 判断点在多边形内
int contain(vector<P> ps, P p) {
int n = ps.size(), ret = 0;
for (int i = 0; i < n; i++) {
P u = ps[i], v = ps[(i + 1) % n];
if (onSeg(u, v, p)) {
return 1;
}
if (cmp(u.y, v.y) <= 0) {
swap(u, v);
}
if (cmp(p.y, u.y) > 0 || cmp(p.y, v.y) <= 0) {
continue;
}
ret ^= crossOp(p, u, v) > 0;
}
return ret * 2;
}
// 凸包
vector<P> convexHull(vector<P> ps) {
int n = ps.size();
if (n <= 1) {
return ps;
}
sort(ps.begin(), ps.end());
vector<P> qs(n * 2);
int k = 0;
for (int i = 0; i < n; qs[k++] = ps[i++]) {
while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0) {
--k;
}
}
for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--]) {
while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0) {
--k;
}
}
qs.resize(k - 1);
return qs;
}
vector<P> convexHullNonStrict(vector<P> ps) {
// caution: need to unique the Ps first
int n = ps.size();
if (n <= 1) {
return ps;
}
sort(ps.begin(), ps.end());
vector<P> qs(n * 2);
int k = 0;
for (int i = 0; i < n; qs[k++] = ps[i++]) {
while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0) {
--k;
}
}
for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--]) {
while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0) {
--k;
}
}
qs.resize(k - 1);
return qs;
}
// 凸包直径
db convexDiameter(vector<P> ps) {
int n = ps.size();
if (n <= 1) {
return 0;
}
int is = 0, js = 0;
for (int k = 1; k < n; k++) {
is = ps[k] < ps[is] ? k : is, js = ps[js] < ps[k] ? k : js;
}
int i = is, j = js;
db ret = ps[i].distTo(ps[j]);
do {
if ((ps[(i + 1) % n] - ps[i]).det(ps[(j + 1) % n] - ps[j]) >= 0) {
(++j) %= n;
} else {
(++i) %= n;
}
ret = max(ret, ps[i].distTo(ps[j]));
} while (i != is || j != js);
return ret;
}
// 直线切割凸包,返回直线左边凸包的点
vector<P> convexCut(const vector<P> &ps, P q1, P q2) {
vector<P> qs;
int n = ps.size();
for (int i = 0; i < n; i++) {
P p1 = ps[i], p2 = ps[(i + 1) % n];
int d1 = crossOp(q1, q2, p1), d2 = crossOp(q1, q2, p2);
if (d1 >= 0) {
qs.push_back(p1);
}
if (d1 * d2 < 0) {
qs.push_back(isLL(p1, p2, q1, q2));
}
}
return qs;
}
// 平面最近点对,[l,r),要求ps按x升序
db min_dist(vector<P> &ps, int l, int r) {
if (r - l <= 5) {
db ret = 1e18;
for (int i = l; i < r; ++i) {
for (int j = l; j < i; ++j) {
ret = min(ret, ps[i].distTo(ps[j]));
}
}
return ret;
}
int m = (l + r) >> 1;
db ret = min(min_dist(ps, l, m), min_dist(ps, m, r));
vector<P> qs;
for (int i = l; i < r; ++i) {
if (abs(ps[i].x - ps[m].x) <= ret) {
qs.push_back(ps[i]);
}
}
sort(qs.begin(), qs.end(), [](P a, P b) -> bool { return a.y < b.y; });
int N = qs.size();
for (int i = 1; i < N; ++i) {
for (int j = i - 1; j >= 0 && qs[j].y >= qs[i].y - ret; --j) {
ret = min(ret, qs[i].distTo(qs[j]));
}
}
return ret;
}
int type(P o1, db r1, P o2, db r2) {
db d = o1.distTo(o2);
if (cmp(d, r1 + r2) == 1) {
return 4;
}
if (cmp(d, r1 + r2) == 0) {
return 3;
}
if (cmp(d, abs(r1 - r2)) == 1) {
return 2;
}
if (cmp(d, abs(r1 - r2)) == 0) {
return 1;
}
return 0;
}
vector<P> isCL(P o, db r, P p1, P p2) {
if (cmp(abs((o - p1).det(p2 - p1) / p1.distTo(p2)), r) > 0) {
return {};
}
db x = (p1 - o).dot(p2 - p1);
db y = (p2 - p1).abs2();
db d = x * x - y * ((p1 - o).abs2() - r * r);
d = max(d, (db)0.0);
P m = p1 - (p2 - p1) * (x / y), dr = (p2 - p1) * (sqrt(d) / y);
return {m - dr, m + dr}; // along dir: p1->p2
}
// need to check whether two circles are the same
vector<P> isCC(P o1, db r1, P o2, db r2) {
db d = o1.distTo(o2);
if (cmp(d, r1 + r2) == 1) {
return {};
}
if (cmp(d, abs(r1 - r2)) == -1) {
return {};
}
d = min(d, r1 + r2);
db y = (r1 * r1 + d * d - r2 * r2) / (2 * d), x = sqrt(r1 * r1 - y * y);
P dr = (o2 - o1).unit();
P q1 = o1 + dr * y, q2 = dr.rot90() * x;
return {q1 - q2, q1 + q2}; // along circle 1
}
vector<P> tanCP(P o, db r, P p) {
db x = (p - o).abs2(), d = x - r * r;
if (sign(d) <= 0) {
return {}; // on circle => no tangent
}
P q1 = o + (p - o) * (r * r / x);
P q2 = (p - o).rot90() * (r * sqrt(d) / x);
return {q1 - q2, q1 + q2}; // counter clock-wise
}
vector<L> extanCC(P o1, db r1, P o2, db r2) {
vector<L> ret;
if (cmp(r1, r2) == 0) {
P dr = (o2 - o1).unit().rot90() * r1;
ret.push_back(L(o1 + dr, o2 + dr));
ret.push_back(L(o1 - dr, o2 - dr));
} else {
P p = (o2 * r1 - o1 * r2) / (r1 - r2);
vector<P> ps = tanCP(o1, r1, p), qs = tanCP(o2, r2, p);
int N = std::min(ps.size(), qs.size());
for (int i = 0; i < N; i++) {
ret.push_back(L(ps[i], qs[i])); // c1 counter-clock wise
}
}
return ret;
}
vector<L> intanCC(P o1, db r1, P o2, db r2) {
vector<L> ret;
P p = (o1 * r2 + o2 * r1) / (r1 + r2);
vector<P> ps = tanCP(o1, r1, p), qs = tanCP(o2, r2, p);
int N = std::min(ps.size(), qs.size());
for (int i = 0; i < N; i++) {
ret.push_back(L(ps[i], qs[i])); // c1 counter-clock wise
}
return ret;
}
db areaCT(db r, P p1, P p2) {
vector<P> is = isCL(P(0, 0), r, p1, p2);
if (is.empty()) {
return r * r * rad(p1, p2) / 2;
}
bool b1 = cmp(p1.abs2(), r * r) == 1, b2 = cmp(p2.abs2(), r * r) == 1;
if (b1 && b2) {
if (sign((p1 - is[0]).dot(p2 - is[0])) <= 0 &&
sign((p1 - is[0]).dot(p2 - is[0])) <= 0) {
return r * r * (rad(p1, is[0]) + rad(is[1], p2)) / 2 +
is[0].det(is[1]) / 2;
} else {
return r * r * rad(p1, p2) / 2;
}
}
if (b1) {
return (r * r * rad(p1, is[0]) + is[0].det(p2)) / 2;
}
if (b2) {
return (p1.det(is[1]) + r * r * rad(is[1], p2)) / 2;
}
return p1.det(p2) / 2;
}
bool parallel(L l0, L l1) { return sign(l0.dir().det(l1.dir())) == 0; }
// 极角排序
bool cmp(P a, P b) {
if (a.quad() != b.quad()) {
return a.quad() < b.quad();
} else {
return sign(a.det(b)) > 0;
}
}
bool sameDir(L l0, L l1) {
return parallel(l0, l1) && sign(l0.dir().dot(l1.dir())) == 1;
}
bool operator<(L l0, L l1) {
if (sameDir(l0, l1)) {
return l1.include(l0[0]);
} else {
return cmp(l0.dir(), l1.dir());
}
}
bool check(L u, L v, L w) { return w.include(isLL(u, v)); }
// 半平面交
vector<P> halfPlaneIS(vector<L> &l) {
sort(l.begin(), l.end());
deque<L> q;
for (int i = 0; i < (int)l.size(); ++i) {
if (i && sameDir(l[i], l[i - 1]))
continue;
while (q.size() > 1 && !check(q[q.size() - 2], q[q.size() - 1], l[i]))
q.pop_back();
while (q.size() > 1 && !check(q[1], q[0], l[i]))
q.pop_front();
q.push_back(l[i]);
}
while (q.size() > 2 && !check(q[q.size() - 2], q[q.size() - 1], q[0]))
q.pop_back();
while (q.size() > 2 && !check(q[1], q[0], q[q.size() - 1]))
q.pop_front();
vector<P> ret;
for (int i = 0; i < (int)q.size(); ++i)
ret.push_back(isLL(q[i], q[(i + 1) % q.size()]));
return ret;
}
// 内心,角平分线的交点
P inCenter(P A, P B, P C) {
db a = (B - C).abs(), b = (C - A).abs(), c = (A - B).abs();
return (A * a + B * b + C * c) / (a + b + c);
}
// 外心,垂直平分线的交点
P circumCenter(P a, P b, P c) {
P bb = b - a, cc = c - a;
db ab = bb.abs2(), dc = cc.abs2(), d = 2 * bb.det(cc);
return a - P(bb.y * dc - cc.y * ab, cc.x * ab - bb.x * dc) / d;
}
// 垂心,垂线的交点
P orthoCenter(P a, P b, P c) {
P ba = b - a, ca = c - a, bc = b - c;
db Y = ba.y * ca.y * bc.y, A = ca.x * ba.y - ba.x * ca.y,
x0 = (Y + ca.x * ba.y * b.x - ba.x * ca.y * c.x) / A,
y0 = -ba.x * (x0 - c.x) / ba.y + ca.y;
return {x0, y0};
}
} // namespace Geometry
using namespace Geometry;
int main(int, char **) {
#ifdef LOCAL
ChronoTimer chrono;
freopen("/home/user/acm/competitve/src/input.txt", "r", stdin);
freopen("/home/user/acm/competitve/src/output.txt", "w", stdout);
#endif
std::cout << fixed << setprecision(12);
int Q; std::cin >> Q;
vector<P> p(3);
for (auto &q : p) q.read();
std::sort(p.begin(), p.end());
P C;
if (parallel(L(p[0], p[1]), L(p[0], p[2]))) {
C = (p[0] + p[2]) / 2;
} else {
C = circumCenter(p[0], p[1], p[2]);
}
db R = C.distTo(p[0]);
// C.write();
for (auto i : views::iota(0, Q)) {
P q;
q.read();
// cerr << q.distTo(C) << "\n";
std::cout << (cmp(R, q.distTo(C)) >= 0 ? "Yes\n" : "No\n");
}
#ifdef LOCAL
print("\nRunning Time:", chrono.elapsed(), "ms");
#endif
}
Re0denX