結果

問題 No.738 平らな農地
ユーザー rlangevin
提出日時 2024-02-07 12:06:59
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 551 ms / 2,000 ms
コード長 6,326 bytes
コンパイル時間 496 ms
コンパイル使用メモリ 81,948 KB
実行使用メモリ 118,428 KB
最終ジャッジ日時 2024-09-28 12:27:55
合計ジャッジ時間 31,852 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 5
other AC * 87
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
input = sys.stdin.readline
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional
T = TypeVar('T')
class SortedMultiset(Generic[T]):
BUCKET_RATIO = 16
SPLIT_RATIO = 24
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)"
a = list(a)
n = self.size = len(a)
if any(a[i] > a[i + 1] for i in range(n - 1)):
a.sort()
bucket_size = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
self.a = [a[n * i // bucket_size : n * (i + 1) // bucket_size] for i in range(bucket_size)]
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __eq__(self, other) -> bool:
return list(self) == list(other)
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedMultiset" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1 : len(s) - 1] + "}"
def _position(self, x: T) -> Tuple[List[T], int, int]:
"return the bucket, index of the bucket and position in which x should be. self must not be empty."
for i, a in enumerate(self.a):
if x <= a[-1]: break
return (a, i, bisect_left(a, x))
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a, _, i = self._position(x)
return i != len(a) and a[i] == x
def count(self, x: T) -> int:
"Count the number of x."
return self.index_right(x) - self.index(x)
def add(self, x: T) -> None:
"Add an element. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return
a, b, i = self._position(x)
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.SPLIT_RATIO:
mid = len(a) >> 1
self.a[b:b+1] = [a[:mid], a[mid:]]
def _pop(self, a: List[T], b: int, i: int) -> T:
ans = a.pop(i)
self.size -= 1
if not a: del self.a[b]
return ans
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a, b, i = self._position(x)
if i == len(a) or a[i] != x: return False
self._pop(a, b, i)
return True
def lt(self, x: T) -> Optional[T]:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Optional[T]:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Optional[T]:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Optional[T]:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, i: int) -> T:
"Return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0: return a[i]
else:
for a in self.a:
if i < len(a): return a[i]
i -= len(a)
raise IndexError
def pop(self, i: int = -1) -> T:
"Pop and return the i-th element."
if i < 0:
for b, a in enumerate(reversed(self.a)):
i += len(a)
if i >= 0: return self._pop(a, ~b, i)
else:
for b, a in enumerate(self.a):
if i < len(a): return self._pop(a, b, i)
i -= len(a)
raise IndexError
def index(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
class Fenwick_Tree:
def __init__(self, n):
self._n = n
self.data = [0] * n
def add(self, p, x):
assert 0 <= p < self._n
p += 1
while p <= self._n:
self.data[p - 1] += x
p += p & -p
def sum(self, l, r):
assert 0 <= l <= r <= self._n
return self._sum(r) - self._sum(l)
def _sum(self, r):
s = 0
while r > 0:
s += self.data[r - 1]
r -= r & -r
return s
from bisect import *
from copy import *
def compress(lst):
B = []
D = dict()
vals = deepcopy(lst)
vals = list(set(vals))
vals.sort()
for i in range(len(lst)):
ind = bisect_left(vals, lst[i])
B.append(ind)
for i in range(len(B)):
D[lst[i]] = B[i]
return B, D, vals
N, K = map(int, input().split())
A = list(map(int, input().split())) + [-1]
A, _, itov = compress(A)
S = SortedMultiset()
Ts = Fenwick_Tree(N + 5)
Tn = Fenwick_Tree(N + 5)
for i in range(K):
S.add(A[i])
Ts.add(A[i], itov[A[i]])
Tn.add(A[i], 1)
ind = S[K//2]
ans = Ts.sum(ind + 1, N + 5) - Ts.sum(0, ind) + itov[ind] * (Tn.sum(0, ind) - Tn.sum(ind+1, N + 5))
for i in range(K, N):
S.discard(A[i - K])
S.add(A[i])
Ts.add(A[i-K], -itov[A[i-K]])
Ts.add(A[i], itov[A[i]])
Tn.add(A[i-K], -1)
Tn.add(A[i], 1)
ind = S[K//2]
val = itov[ind]
ans = min(ans, Ts.sum(ind + 1, N + 5) - Ts.sum(0, ind) + val * (Tn.sum(0, ind) - Tn.sum(ind+1, N + 5)))
print(ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0