結果
問題 | No.125 悪の花弁 |
ユーザー | hashiryo |
提出日時 | 2024-02-08 21:39:47 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 38 ms / 5,000 ms |
コード長 | 15,880 bytes |
コンパイル時間 | 2,678 ms |
コンパイル使用メモリ | 222,068 KB |
実行使用メモリ | 11,088 KB |
最終ジャッジ日時 | 2024-09-28 12:51:53 |
合計ジャッジ時間 | 3,739 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 29 ms
9,456 KB |
testcase_01 | AC | 23 ms
6,940 KB |
testcase_02 | AC | 27 ms
7,416 KB |
testcase_03 | AC | 29 ms
7,464 KB |
testcase_04 | AC | 38 ms
11,088 KB |
testcase_05 | AC | 21 ms
7,560 KB |
ソースコード
// #define _GLIBCXX_DEBUG #include <bits/stdc++.h> // clang-format off std::ostream&operator<<(std::ostream&os,std::int8_t x){return os<<(int)x;} std::ostream&operator<<(std::ostream&os,std::uint8_t x){return os<<(int)x;} std::ostream&operator<<(std::ostream&os,const __int128_t &v){if(!v)os<<"0";__int128_t tmp=v<0?(os<<"-",-v):v;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;} std::ostream&operator<<(std::ostream&os,const __uint128_t &v){if(!v)os<<"0";__uint128_t tmp=v;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;} #define checkpoint() (void(0)) #define debug(...) (void(0)) #define debugArray(x,n) (void(0)) #define debugMatrix(x,h,w) (void(0)) // clang-format on #include <type_traits> template <class Int> constexpr inline Int mod_inv(Int a, Int mod) { static_assert(std::is_signed_v<Int>); Int x= 1, y= 0, b= mod; for (Int q= 0, z= 0; b;) z= x, x= y, y= z - y * (q= a / b), z= a, a= b, b= z - b * q; return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod; } namespace math_internal { using namespace std; using u8= unsigned char; using u32= unsigned; using i64= long long; using u64= unsigned long long; using u128= __uint128_t; #define CE constexpr #define IL inline #define NORM \ if (n >= mod) n-= mod; \ return n #define PLUS(U, M) \ CE IL U plus(U l, U r) const { return l+= r, l < (M) ? l : l - (M); } #define DIFF(U, C, M) \ CE IL U diff(U l, U r) const { return l-= r, l >> C ? l + (M) : l; } #define SGN(U) \ static CE IL U set(U n) { return n; } \ static CE IL U get(U n) { return n; } \ static CE IL U norm(U n) { return n; } template <class u_t, class du_t, u8 B, u8 A> struct MP_Mo { u_t mod; CE MP_Mo(): mod(0), iv(0), r2(0) {} CE MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {} CE IL u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); } PLUS(u_t, mod << 1) DIFF(u_t, A, mod << 1) CE IL u_t set(u_t n) const { return mul(n, r2); } CE IL u_t get(u_t n) const { n= reduce(n); NORM; } CE IL u_t norm(u_t n) const { NORM; } private: u_t iv, r2; static CE u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; } CE IL u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); } }; struct MP_Na { u32 mod; CE MP_Na(): mod(0){}; CE MP_Na(u32 m): mod(m) {} CE IL u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; } PLUS(u32, mod) DIFF(u32, 31, mod) SGN(u32) }; struct MP_Br { // mod < 2^31 u32 mod; CE MP_Br(): mod(0), s(0), x(0) {} CE MP_Br(u32 m): mod(m), s(95 - __builtin_clz(m - 1)), x(((u128(1) << s) + m - 1) / m) {} CE IL u32 mul(u32 l, u32 r) const { return rem(u64(l) * r); } PLUS(u32, mod) DIFF(u32, 31, mod) SGN(u32) private: u8 s; u64 x; CE IL u64 quo(u64 n) const { return (u128(x) * n) >> s; } CE IL u32 rem(u64 n) const { return n - quo(n) * mod; } }; struct MP_Br2 { // 2^20 < mod <= 2^41 u64 mod; CE MP_Br2(): mod(0), x(0) {} CE MP_Br2(u64 m): mod(m), x((u128(1) << 84) / m) {} CE IL u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); } PLUS(u64, mod << 1) DIFF(u64, 63, mod << 1) static CE IL u64 set(u64 n) { return n; } CE IL u64 get(u64 n) const { NORM; } CE IL u64 norm(u64 n) const { NORM; } private: u64 x; CE IL u128 quo(const u128 &n) const { return (n * x) >> 84; } CE IL u64 rem(const u128 &n) const { return n - quo(n) * mod; } }; struct MP_D2B1 { u8 s; u64 mod, d, v; CE MP_D2B1(): s(0), mod(0), d(0), v(0) {} CE MP_D2B1(u64 m): s(__builtin_clzll(m)), mod(m), d(m << s), v(u128(-1) / d) {} CE IL u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; } PLUS(u64, mod) DIFF(u64, 63, mod) SGN(u64) private: CE IL u64 rem(const u128 &u) const { u128 q= (u >> 64) * v + u; u64 r= u64(u) - (q >> 64) * d - d; if (r > u64(q)) r+= d; if (r >= d) r-= d; return r; } }; template <class u_t, class MP> CE u_t pow(u_t x, u64 k, const MP &md) { for (u_t ret= md.set(1);; x= md.mul(x, x)) if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret; } #undef NORM #undef PLUS #undef DIFF #undef SGN #undef CE } namespace math_internal { struct m_b {}; struct s_b: m_b {}; } template <class mod_t> constexpr bool is_modint_v= std::is_base_of_v<math_internal::m_b, mod_t>; template <class mod_t> constexpr bool is_staticmodint_v= std::is_base_of_v<math_internal::s_b, mod_t>; namespace math_internal { #define CE constexpr template <class MP, u64 MOD> struct SB: s_b { protected: static CE MP md= MP(MOD); }; template <class Int, class U, class B> struct MInt: public B { using Uint= U; static CE inline auto mod() { return B::md.mod; } CE MInt(): x(0) {} template <class T, typename= enable_if_t<is_modint_v<T> && !is_same_v<T, MInt>>> CE MInt(T v): x(B::md.set(v.val() % B::md.mod)) {} CE MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {} CE MInt operator-() const { return MInt() - *this; } #define FUNC(name, op) \ CE MInt name const { \ MInt ret; \ return ret.x= op, ret; \ } FUNC(operator+(const MInt & r), B::md.plus(x, r.x)) FUNC(operator-(const MInt & r), B::md.diff(x, r.x)) FUNC(operator*(const MInt & r), B::md.mul(x, r.x)) FUNC(pow(u64 k), math_internal::pow(x, k, B::md)) #undef FUNC CE MInt operator/(const MInt& r) const { return *this * r.inv(); } CE MInt& operator+=(const MInt& r) { return *this= *this + r; } CE MInt& operator-=(const MInt& r) { return *this= *this - r; } CE MInt& operator*=(const MInt& r) { return *this= *this * r; } CE MInt& operator/=(const MInt& r) { return *this= *this / r; } CE bool operator==(const MInt& r) const { return B::md.norm(x) == B::md.norm(r.x); } CE bool operator!=(const MInt& r) const { return !(*this == r); } CE bool operator<(const MInt& r) const { return B::md.norm(x) < B::md.norm(r.x); } CE inline MInt inv() const { return mod_inv<Int>(val(), B::md.mod); } CE inline Uint val() const { return B::md.get(x); } friend ostream& operator<<(ostream& os, const MInt& r) { return os << r.val(); } friend istream& operator>>(istream& is, MInt& r) { i64 v; return is >> v, r= MInt(v), is; } private: Uint x; }; template <u64 MOD> using ModInt= conditional_t < (MOD < (1 << 30)) & MOD, MInt<int, u32, SB<MP_Mo<u32, u64, 32, 31>, MOD>>, conditional_t < (MOD < (1ull << 62)) & MOD, MInt<i64, u64, SB<MP_Mo<u64, u128, 64, 63>, MOD>>, conditional_t<MOD<(1u << 31), MInt<int, u32, SB<MP_Na, MOD>>, conditional_t<MOD<(1ull << 32), MInt<i64, u32, SB<MP_Na, MOD>>, conditional_t<MOD <= (1ull << 41), MInt<i64, u64, SB<MP_Br2, MOD>>, MInt<i64, u64, SB<MP_D2B1, MOD>>>>>>>; #undef CE } using math_internal::ModInt; namespace math_internal { template <class Uint, class MP, u64... args> constexpr bool miller_rabin(Uint n) { const MP md(n); const Uint s= __builtin_ctzll(n - 1), d= n >> s, one= md.set(1), n1= md.norm(md.set(n - 1)); for (auto a: {args...}) if (Uint b= a % n; b) if (Uint p= md.norm(pow(md.set(b), d, md)); p != one) for (int i= s; p != n1; p= md.norm(md.mul(p, p))) if (!(--i)) return 0; return 1; } constexpr bool is_prime(u64 n) { if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3; if (n < (1 << 30)) return miller_rabin<u32, MP_Mo<u32, u64, 32, 31>, 2, 7, 61>(n); if (n < (1ull << 62)) return miller_rabin<u64, MP_Mo<u64, u128, 64, 63>, 2, 325, 9375, 28178, 450775, 9780504, 1795265022>(n); return miller_rabin<u64, MP_D2B1, 2, 325, 9375, 28178, 450775, 9780504, 1795265022>(n); } } using math_internal::is_prime; template <class Int> constexpr int bsf(Int a) { if constexpr (sizeof(Int) == 16) { uint64_t lo= a & uint64_t(-1); return lo ? __builtin_ctzll(lo) : 64 + __builtin_ctzll(a >> 64); } else if constexpr (sizeof(Int) == 8) return __builtin_ctzll(a); else return __builtin_ctz(a); } template <class Int> constexpr Int binary_gcd(Int a, Int b) { if (a == 0 || b == 0) return a + b; int n= bsf(a), m= bsf(b), s= 0; for (a>>= n, b>>= m; a != b;) { Int d= a - b; bool f= a > b; s= bsf(d), b= f ? b : a, a= (f ? d : -d) >> s; } return a << std::min(n, m); } namespace math_internal { template <class T> constexpr void bubble_sort(T *bg, T *ed) { for (int sz= ed - bg, i= 0; i < sz; i++) for (int j= sz; --j > i;) if (auto tmp= bg[j - 1]; bg[j - 1] > bg[j]) bg[j - 1]= bg[j], bg[j]= tmp; } template <class T, size_t _Nm> struct ConstexprArray { constexpr size_t size() const { return sz; } constexpr auto &operator[](int i) const { return dat[i]; } constexpr auto *begin() const { return dat; } constexpr auto *end() const { return dat + sz; } protected: T dat[_Nm]= {}; size_t sz= 0; friend ostream &operator<<(ostream &os, const ConstexprArray &r) { os << "["; for (size_t i= 0; i < r.sz; ++i) os << r[i] << ",]"[i == r.sz - 1]; return os; } }; class Factors: public ConstexprArray<pair<u64, uint16_t>, 16> { template <class Uint, class MP> static constexpr Uint rho(Uint n, Uint c) { const MP md(n); auto f= [&md, n, c](Uint x) { return md.plus(md.mul(x, x), c); }; const Uint m= 1LL << (__lg(n) / 5); Uint x= 1, y= md.set(2), z= 1, q= md.set(1), g= 1; for (Uint r= 1, i= 0; g == 1; r<<= 1) { for (x= y, i= r; i--;) y= f(y); for (Uint k= 0; k < r && g == 1; g= binary_gcd(md.get(q), n), k+= m) for (z= y, i= min(m, r - k); i--;) y= f(y), q= md.mul(q, md.diff(y, x)); } if (g == n) do { z= f(z), g= binary_gcd(md.get(md.diff(z, x)), n); } while (g == 1); return g; } static constexpr u64 find_prime_factor(u64 n) { if (is_prime(n)) return n; for (u64 i= 100; i--;) if (n= n < (1 << 30) ? rho<u32, MP_Mo<u32, u64, 32, 31>>(n, i + 1) : n < (1ull << 62) ? rho<u64, MP_Mo<u64, u128, 64, 63>>(n, i + 1) : rho<u64, MP_D2B1>(n, i + 1); is_prime(n)) return n; return 0; } constexpr void init(u64 n) { for (u64 p= 2; p < 98 && p * p <= n; ++p) if (n % p == 0) for (dat[sz++].first= p; n % p == 0;) n/= p, ++dat[sz - 1].second; for (u64 p= 0; n > 1; dat[sz++].first= p) for (p= find_prime_factor(n); n % p == 0;) n/= p, ++dat[sz].second; } public: constexpr Factors()= default; constexpr Factors(u64 n) { init(n), bubble_sort(dat, dat + sz); } }; } // namespace math_internal using math_internal::Factors; constexpr uint64_t totient(const Factors &f) { uint64_t ret= 1, i= 0; for (auto [p, e]: f) for (ret*= p - 1, i= e; --i;) ret*= p; return ret; } constexpr auto totient(uint64_t n) { return totient(Factors(n)); } template <class Uint= uint64_t> std::vector<Uint> enumerate_divisors(const Factors &f) { int k= 1; for (auto [p, e]: f) k*= e + 1; std::vector<Uint> ret(k, 1); k= 1; for (auto [p, e]: f) { int sz= k; for (Uint pw= 1; pw*= p, e--;) for (int j= 0; j < sz;) ret[k++]= ret[j++] * pw; } return ret; } template <class Uint> std::vector<Uint> enumerate_divisors(Uint n) { return enumerate_divisors<Uint>(Factors(n)); } template <class T> struct ArrayOnDivisors { uint64_t n; uint8_t shift; std::vector<int> os, id; std::vector<std::pair<uint64_t, T>> dat; unsigned hash(uint64_t i) const { return (i * 11995408973635179863ULL) >> shift; } #define _UP for (int j= k; j < a; ++j) #define _DWN for (int j= a; j-- > k;) #define _OP(J, K, op) dat[i + J].second op##= dat[i + K].second #define _FUN(J, K, name) name(dat[i + J].second, dat[i + K].second) #define _ZETA(op) \ int k= 1; \ for (auto [p, e]: factors) { \ int a= k * (e + 1); \ for (int i= 0, d= dat.size(); i < d; i+= a) op; \ k= a; \ } public: Factors factors; template <class Uint> ArrayOnDivisors(uint64_t N, const Factors &factors, const std::vector<Uint> &divisors): n(N), shift(__builtin_clzll(divisors.size()) - 1), os((1 << (64 - shift)) + 1), id(divisors.size()), dat(divisors.size()), factors(factors) { for (int i= divisors.size(); i--;) dat[i].first= divisors[i]; for (auto d: divisors) ++os[hash(d)]; std::partial_sum(os.begin(), os.end(), os.begin()); for (int i= divisors.size(); i--;) id[--os[hash(divisors[i])]]= i; } ArrayOnDivisors(uint64_t N, const Factors &factors): ArrayOnDivisors(N, factors, enumerate_divisors(factors)) {} ArrayOnDivisors(uint64_t N): ArrayOnDivisors(N, Factors(N)) {} T &operator[](uint64_t i) { assert(i && n % i == 0); for (unsigned a= hash(i), j= os[a]; j < os[a + 1]; ++j) if (auto &[d, v]= dat[id[j]]; d == i) return v; assert(0); } size_t size() const { return dat.size(); } auto begin() { return dat.begin(); } auto begin() const { return dat.begin(); } auto end() { return dat.begin() + os.back(); } auto end() const { return dat.begin() + os.back(); } /* f -> g s.t. g(n) = sum_{m|n} f(m) */ void divisor_zeta() { _ZETA(_UP _OP(j, j - k, +)) } /* f -> h s.t. f(n) = sum_{m|n} h(m) */ void divisor_mobius() { _ZETA(_DWN _OP(j, j - k, -)) } /* f -> g s.t. g(n) = sum_{n|m} f(m) */ void multiple_zeta() { _ZETA(_DWN _OP(j - k, j, +)) } /* f -> h s.t. f(n) = sum_{n|m} h(m) */ void multiple_mobius() { _ZETA(_UP _OP(j - k, j, -)) } /* f -> g s.t. g(n) = sum_{m|n} f(m), add(T& a, T b): a+=b */ template <class F> void divisor_zeta(const F &add) { _ZETA(_UP _FUN(j, j - k, add)) } /* f -> h s.t. f(n) = sum_{m|n} h(m), sub(T& a, T b): a-=b */ template <class F> void divisor_mobius(const F &sub) { _ZETA(_UP _FUN(j, j - k, sub)) } /* f -> g s.t. g(n) = sum_{n|m} f(m), add(T& a, T b): a+=b */ template <class F> void multiple_zeta(const F &add) { _ZETA(_UP _FUN(j - k, j, add)) } /* f -> h s.t. f(n) = sum_{n|m} h(m), sub(T& a, T b): a-=b */ template <class F> void multiple_mobius(const F &sub) { _ZETA(_UP _FUN(j - k, j, sub)) } #undef _UP #undef _DWN #undef _OP #undef _ZETA // f(p,e): multiplicative function of p^e template <typename F> void set_multiplicative(const F &f) { int k= 1; dat[0].second= 1; for (auto [p, e]: factors) for (int m= k, d= 1; d <= e; ++d) for (int i= 0; i < m;) dat[k++].second= dat[i++].second * f(p, d); } void set_totient() { int k= 1; dat[0].second= 1; for (auto [p, e]: factors) { uint64_t b= p - 1; for (int m= k; e--; b*= p) for (int i= 0; i < m;) dat[k++].second= dat[i++].second * b; } } void set_mobius() { set_multiplicative([](auto, auto e) { return e == 1 ? -1 : 0; }); } }; template <class mod_t> class FactorialPrecalculation { static_assert(is_modint_v<mod_t>); static inline std::vector<mod_t> iv, fct, fiv; public: static void reset() { iv.clear(), fct.clear(), fiv.clear(); } static inline mod_t inv(int n) { assert(0 < n); if (int k= iv.size(); k <= n) { if (iv.resize(n + 1); !k) iv[1]= 1, k= 2; for (int mod= mod_t::mod(), q; k <= n; ++k) q= (mod + k - 1) / k, iv[k]= iv[k * q - mod] * q; } return iv[n]; } static inline mod_t fact(int n) { assert(0 <= n); if (int k= fct.size(); k <= n) { if (fct.resize(n + 1); !k) fct[0]= 1, k= 1; for (; k <= n; ++k) fct[k]= fct[k - 1] * k; } return fct[n]; } static inline mod_t finv(int n) { assert(0 <= n); if (int k= fiv.size(); k <= n) { if (fiv.resize(n + 1); !k) fiv[0]= 1, k= 1; for (; k <= n; ++k) fiv[k]= fiv[k - 1] * inv(k); } return fiv[n]; } static inline mod_t nPr(int n, int r) { return r < 0 || n < r ? mod_t(0) : fact(n) * finv(n - r); } // [x^r] (1 + x)^n static inline mod_t nCr(int n, int r) { return r < 0 || n < r ? mod_t(0) : fact(n) * finv(n - r) * finv(r); } // [x^r] (1 - x)^{-n} static inline mod_t nHr(int n, int r) { return !r ? mod_t(1) : nCr(n + r - 1, r); } }; using namespace std; signed main() { cin.tie(0); ios::sync_with_stdio(0); using Mint= ModInt<int(1e9) + 7>; using F= FactorialPrecalculation<Mint>; int K; cin >> K; int tot= 0, g= 0; vector<int> C(K); for (int i= 0; i < K; ++i) cin >> C[i], tot+= C[i], g= gcd(g, C[i]); Mint ans= 0; ArrayOnDivisors<Mint> A(g); A.set_totient(); for (auto [d, phi]: A) { Mint tmp= F::fact(tot / d); for (int i= 0; i < K; ++i) tmp*= F::finv(C[i] / d); tmp*= phi; ans+= tmp; } ans/= tot; cout << ans << '\n'; return 0; }