結果
問題 | No.274 The Wall |
ユーザー | 草苺奶昔 |
提出日時 | 2024-02-08 23:50:09 |
言語 | Go (1.22.1) |
結果 |
WA
|
実行時間 | - |
コード長 | 9,728 bytes |
コンパイル時間 | 14,401 ms |
コンパイル使用メモリ | 234,396 KB |
実行使用メモリ | 205,016 KB |
最終ジャッジ日時 | 2024-09-28 12:55:41 |
合計ジャッジ時間 | 24,541 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
ソースコード
package main import ( "bufio" "fmt" "os" ) func main() { 放置国旗() // yosupo() yuki274() } // https://atcoder.jp/contests/practice2/tasks/practice2_h // 1-N号旗设置位置(放置国旗) // 第i号旗可以设置在xi位置或者yi位置 // !任意两面旗距离需要大于D // 是否可以设置旗子 // 1≤N≤1000 // D,Xi,Yi<=1e9 // // 命题i:第i个棋子放在xi位置,检查是否满足条件 func 放置国旗() { in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n, d int fmt.Fscan(in, &n, &d) x, y := make([]int, n), make([]int, n) for i := 0; i < n; i++ { fmt.Fscan(in, &x[i], &y[i]) } ts := NewTwoSat(n) for i := 0; i < n; i++ { for j := i + 1; j < n; j++ { // 00 if abs(x[i]-x[j]) < d { ts.AddNand(i, j) } // 01 if abs(x[i]-y[j]) < d { ts.AddNand(i, ts.Rev(j)) } // 10 if abs(y[i]-x[j]) < d { ts.AddNand(ts.Rev(i), j) } // 11 if abs(y[i]-y[j]) < d { ts.AddNand(ts.Rev(i), ts.Rev(j)) } } } res, ok := ts.Solve() if !ok { fmt.Fprintln(out, "No") return } fmt.Fprintln(out, "Yes") for i := 0; i < n; i++ { if res[i] { fmt.Fprintln(out, x[i]) } else { fmt.Fprintln(out, y[i]) } } } // No.274 The Wall-墙壁 // https://yukicoder.me/problems/no/274 // 用n个砖块构建墙壁,每个砖长度为m // 每个砖块上有一段颜色,砖块可以180度旋转 // 将这n个砖块拼接成一面墙壁,使得每一列存在颜色的部分最多只有一个 // 问是否能够拼接成功 // n<=2000,m<=4000 // n个命题分别为[第i个砖块不旋转] // 每两个之间验证四种情况 func yuki274() { in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n, m int fmt.Fscan(in, &n, &m) color := make([][]int, n) // [left,right] for i := 0; i < n; i++ { var l, r int fmt.Fscan(in, &l, &r) color[i] = []int{l, r} } isOverlapped := func(left1, right1, left2, right2 int) bool { start := max(left1, left2) end := min(right1, right2) return start <= end } // n个命题分别为[第i个砖块不旋转] // 每两个之间验证四种情况 ts := NewTwoSat(n) for i := 0; i < n; i++ { left1, right1 := color[i][0], color[i][1] revLeft1, revRight1 := m-1-right1, m-1-left1 for j := i + 1; j < n; j++ { left2, right2 := color[j][0], color[j][1] revLeft2, revRight2 := m-1-right2, m-1-left2 // 1. 两个砖块都不旋转 if isOverlapped(left1, right1, left2, right2) { ts.AddNand(i, j) } // 2. 第一个砖块旋转,第二个砖块不旋转 if isOverlapped(revLeft1, revRight1, left2, right2) { ts.AddNand(ts.Rev(i), j) } // 3. 第一个砖块不旋转,第二个砖块旋转 if isOverlapped(left1, right1, revLeft2, revRight2) { ts.AddNand(i, ts.Rev(j)) } // 4. 两个砖块都旋转 if isOverlapped(revLeft1, revRight1, revLeft2, revRight2) { ts.AddNand(ts.Rev(i), ts.Rev(j)) } } } _, ok := ts.Solve() if !ok { fmt.Fprintln(out, "NO") return } fmt.Fprintln(out, "YES") } // No.470 Inverse S+T Problem // https://yukicoder.me/problems/no/470/editorial // 给定n个长度为3的字符串,由小写字母和大写字母组成 // 求2n个非空串Si和Ti,使得 S[i] + T[i] = U[i],且这2n个串都不相同 // n<=1e5 // 长度为3的字符串划分成两个非空部分,要么是1/2,要么是2/1 => 2SAT // n很大的时候一定有重复串,可以排除 // !n不大的时候用2SAT解决 :命题i代表S[i]用1个字符 func yuki470() { in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n int fmt.Fscan(in, &n) words := make([]string, n) for i := 0; i < n; i++ { fmt.Fscan(in, &words[i]) } // 只使用a-z和A-Z的字符,一个字符一定有重复的 if n > 26*2 { fmt.Fprintln(out, "Impossible") return } ts := NewTwoSat(n) // 枚举所有的对,看哪些s[i]不能同时用一个字符划分 // かぶさる可能性のあるものを反転させたものをグラフに追加する ?? for i := 0; i < n; i++ { w1 := words[i] for j := i + 1; j < n; j++ { w2 := words[j] // 1 1 s1, t1, s2, t2 := w1[0:1], w1[1:], w2[0:1], w2[1:] if s1 == s2 || t1 == t2 { ts.AddNand(i, j) } // 1 2 s1, t1, s2, t2 = w1[0:1], w1[1:], w2[0:2], w2[2:] if s1 == t2 || t1 == s2 { ts.AddNand(i, ts.Rev(j)) } // 2 1 s1, t1, s2, t2 = w1[0:2], w1[2:], w2[0:1], w2[1:] if s1 == t2 || t1 == s2 { ts.AddNand(ts.Rev(i), j) } // 2 2 s1, t1, s2, t2 = w1[0:2], w1[2:], w2[0:2], w2[2:] if s1 == s2 || t1 == t2 { ts.AddNand(ts.Rev(i), ts.Rev(j)) } } } res, ok := ts.Solve() if !ok { fmt.Fprintln(out, "Impossible") return } for i := 0; i < n; i++ { if res[i] { s, t := words[i][0:1], words[i][1:] fmt.Fprint(out, s, " ", t) } else { s, t := words[i][0:2], words[i][2:] fmt.Fprint(out, s, " ", t) } fmt.Fprintln(out) } } // No.1078 I love Matrix Construction // https://yukicoder.me/problems/no/1078 // 给定长为n的数组S,T,U // 问能否构建出满足以下条件的n*n矩阵A // 1. A[i][j] 为0/1 // 2. 对所有的 (i,j), A[S[i]][j]+A[j][T[i]]*2 != U[i] // n<=500 func yuki1078() { in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n int fmt.Fscan(in, &n) S := make([]int, n) for i := 0; i < n; i++ { fmt.Fscan(in, &S[i]) S[i]-- } T := make([]int, n) for i := 0; i < n; i++ { fmt.Fscan(in, &T[i]) T[i]-- } U := make([]int, n) for i := 0; i < n; i++ { fmt.Fscan(in, &U[i]) } // 条件i为A[i][j]取0 ts := NewTwoSat(n * n) for i := 0; i < n; i++ { si := S[i] ti := T[i] for j := 0; j < n; j++ { pos1 := si*n + j pos2 := j*n + ti if U[i] == 0 { ts.AddNand(pos1, pos2) // 0,0 } else if U[i] == 1 { ts.AddNand(ts.Rev(pos1), pos2) //1,0 } else if U[i] == 2 { ts.AddNand(pos1, ts.Rev(pos2)) //0,1 } else if U[i] == 3 { ts.AddNand(ts.Rev(pos1), ts.Rev(pos2)) //1,1 } } } res, ok := ts.Solve() if !ok { fmt.Fprintln(out, -1) return } matrix := make([][]int, n) for i := 0; i < n; i++ { matrix[i] = make([]int, n) } for i, v := range res { if !v { matrix[i/n][i%n] = 1 } } for i := 0; i < n; i++ { for j := 0; j < n; j++ { fmt.Fprint(out, matrix[i][j], " ") } fmt.Fprintln(out) } } // https://judge.yosupo.jp/problem/two_sat // N 変数 M 節の 2 Sat が与えられる。充足可能か判定し、可能ならば割り当てを一つ求めてください。 func yosupo() { in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var p, cnf string var n, m int fmt.Fscan(in, &p, &cnf, &n, &m) ts := NewTwoSat(n) for i := 0; i < m; i++ { var a, b, c int fmt.Fscan(in, &a, &b, &c) if a < 0 { a = ts.Rev(-a - 1) } else { a-- } if b < 0 { b = ts.Rev(-b - 1) } else { b-- } ts.AddOr(a, b) } res, ok := ts.Solve() if !ok { fmt.Fprintln(out, "s UNSATISFIABLE") return } fmt.Fprintln(out, "s SATISFIABLE") fmt.Fprint(out, "v ") for i, v := range res { if v { fmt.Fprint(out, i+1, " ") } else { fmt.Fprint(out, -(i + 1), " ") } } fmt.Fprintln(out, 0) } type TwoSat struct { size int scc *scc } func NewTwoSat(n int) *TwoSat { return &TwoSat{size: n, scc: newScc(n + n)} } // u -> v <=> !v -> !u func (ts *TwoSat) AddIf(u, v int) { ts.scc.AddEdge(u, v) ts.scc.AddEdge(ts.Rev(v), ts.Rev(u)) } // u or v <=> !u -> v func (ts *TwoSat) AddOr(u, v int) { ts.AddIf(ts.Rev(u), v) } // u nand v <=> u -> !v func (ts *TwoSat) AddNand(u, v int) { ts.AddIf(u, ts.Rev(v)) } // u <=> !u -> u func (ts *TwoSat) SetTrue(u int) { ts.scc.AddEdge(ts.Rev(u), u) } // !u <=> u -> !u func (ts *TwoSat) SetFalse(u int) { ts.scc.AddEdge(u, ts.Rev(u)) } func (ts *TwoSat) Rev(u int) int { if u >= ts.size { return u - ts.size } return u + ts.size } func (ts *TwoSat) Solve() (res []bool, ok bool) { ts.scc.Build() res = make([]bool, ts.size) for i := 0; i < ts.size; i++ { if ts.scc.belong[i] == ts.scc.belong[ts.Rev(i)] { return } res[i] = ts.scc.belong[i] > ts.scc.belong[ts.Rev(i)] } ok = true return } // kosaraju算法求强连通分量. type scc struct { graph [][]int32 belong []int32 //每个顶点所属的强连通分量的编号 rGraph [][]int32 order []int32 used []bool } func newScc(n int) *scc { return &scc{graph: make([][]int32, n)} } func (scc *scc) AddEdge(from, to int) { scc.graph[from] = append(scc.graph[from], int32(to)) } func (scc *scc) Build() { n32 := int32(len(scc.graph)) scc.rGraph = make([][]int32, n32) for i := int32(0); i < n32; i++ { for _, e := range scc.graph[i] { scc.rGraph[e] = append(scc.rGraph[e], i) } } scc.belong = make([]int32, n32) for i := range scc.belong { scc.belong[i] = -1 } scc.used = make([]bool, n32) for i := int32(0); i < n32; i++ { scc.dfs(i) } for i, j := 0, len(scc.order)-1; i < j; i, j = i+1, j-1 { scc.order[i], scc.order[j] = scc.order[j], scc.order[i] } ptr := int32(0) for _, v := range scc.order { if scc.belong[v] == -1 { scc.rdfs(v, ptr) ptr++ } } } func (scc *scc) dfs(idx int32) { tmp := scc.used[idx] scc.used[idx] = true if tmp { return } for _, e := range scc.graph[idx] { scc.dfs(e) } scc.order = append(scc.order, idx) } func (scc *scc) rdfs(idx int32, cnt int32) { if scc.belong[idx] != -1 { return } scc.belong[idx] = cnt for _, e := range scc.rGraph[idx] { scc.rdfs(e, cnt) } } func min(a, b int) int { if a < b { return a } return b } func max(a, b int) int { if a > b { return a } return b } func abs(x int) int { if x < 0 { return -x } return x }