結果
| 問題 |
No.1170 Never Want to Walk
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-02-09 16:16:29 |
| 言語 | Go (1.23.4) |
| 結果 |
AC
|
| 実行時間 | 276 ms / 2,000 ms |
| コード長 | 6,509 bytes |
| コンパイル時間 | 12,522 ms |
| コンパイル使用メモリ | 224,104 KB |
| 実行使用メモリ | 14,200 KB |
| 最終ジャッジ日時 | 2024-09-28 13:01:46 |
| 合計ジャッジ時間 | 17,618 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 37 |
ソースコード
package main
import (
"bufio"
"fmt"
"math/bits"
"os"
"sort"
"strings"
)
// No.1170 Never Want to Walk
// https://yukicoder.me/problems/no/1170
// 数轴上有n个车站,第i个位置在xi
// 如果两个车站之间的距离di与dj满足 A<=|di-dj|<=B,则这两个车站可以相互到达,否则不能相互到达
// 对每个车站,求出从该车站出发,可以到达的车站的数量
// 1<=n<=2e5 0<=A<=B<=1e9 0<=x1<=x2<...<=xn<=1e9
//
// !将序列搬到线段树上加速区间操作(线段树优化建图).
func main() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n int32
var A, B int
fmt.Fscan(in, &n, &A, &B)
positions := make([]int, n)
for i := int32(0); i < n; i++ {
fmt.Fscan(in, &positions[i])
}
D := NewDivideInterval(n)
uf := NewUnionFindArray(D.Size())
weights := make([]int, D.Size())
for i := int32(0); i < n; i++ {
weights[D.Id(i)] = 1
}
f := func(big, small int32) {
weights[big] += weights[small]
}
var dfs func(int32) // 线段树上dfs
dfs = func(cur int32) {
if D.IsLeaf(cur) {
return
}
for k := int32(0); k < 2; k++ {
child := cur<<1 | k
if !uf.IsConnected(cur, child) {
uf.UnionWithCallback(cur, child, f)
dfs(child)
}
}
}
for i := int32(0); i < n; i++ {
start := int32(sort.SearchInts(positions, positions[i]+A))
end := int32(sort.SearchInts(positions, positions[i]+B+1))
D.EnumerateSegment(start, end, func(segmentId int32) {
uf.UnionWithCallback(D.Id(i), segmentId, f)
dfs(segmentId)
}, false)
}
for i := int32(0); i < n; i++ {
fmt.Fprintln(out, weights[uf.Find(D.Id(i))])
}
}
type DivideInterval struct {
Offset int32 // 线段树中一共offset+n个节点,offset+i对应原来的第i个节点.
n int32
}
// 线段树分割区间.
// 将长度为n的序列搬到长度为offset+n的线段树上, 以实现快速的区间操作.
func NewDivideInterval(n int32) *DivideInterval {
offset := int32(1)
for offset < n {
offset <<= 1
}
return &DivideInterval{Offset: offset, n: n}
}
// 获取原下标为i的元素在树中的(叶子)编号.
func (d *DivideInterval) Id(rawIndex int32) int32 {
return rawIndex + d.Offset
}
// O(logn) 顺序遍历`[start,end)`区间对应的线段树节点.
// sorted表示是否按照节点编号从小到大的顺序遍历.
func (d *DivideInterval) EnumerateSegment(start, end int32, f func(segmentId int32), sorted bool) {
if start < 0 {
start = 0
}
if end > d.n {
end = d.n
}
if start >= end {
return
}
if sorted {
for _, i := range d.getSegmentIds(start, end) {
f(i)
}
} else {
for start, end = start+d.Offset, end+d.Offset; start < end; start, end = start>>1, end>>1 {
if start&1 == 1 {
f(start)
start++
}
if end&1 == 1 {
end--
f(end)
}
}
}
}
func (d *DivideInterval) EnumeratePoint(index int32, f func(segmentId int32)) {
if index < 0 || index >= d.n {
return
}
index += d.Offset
for index > 0 {
f(index)
index >>= 1
}
}
// O(n) 从根向叶子方向push.
func (d *DivideInterval) PushDown(f func(parent, child int32)) {
for p := int32(1); p < d.Offset; p++ {
f(p, p<<1)
f(p, p<<1|1)
}
}
// O(n) 从叶子向根方向update.
func (d *DivideInterval) PushUp(f func(parent, child1, child2 int32)) {
for p := d.Offset - 1; p > 0; p-- {
f(p, p<<1, p<<1|1)
}
}
// 线段树的节点个数.
func (d *DivideInterval) Size() int32 {
return d.Offset + d.n
}
func (d *DivideInterval) IsLeaf(segmentId int32) bool {
return segmentId >= d.Offset
}
func (d *DivideInterval) Depth(u int32) int32 {
if u == 0 {
return 0
}
return int32(bits.LeadingZeros32(uint32(u))) - 1
}
// 线段树(完全二叉树)中两个节点的最近公共祖先(两个二进制数字的最长公共前缀).
func (d *DivideInterval) Lca(u, v int32) int32 {
if u == v {
return u
}
if u > v {
u, v = v, u
}
depth1 := d.Depth(u)
depth2 := d.Depth(v)
diff := u ^ (v >> (depth2 - depth1))
if diff == 0 {
return u
}
len := bits.Len32(uint32(diff))
return u >> len
}
func (d *DivideInterval) getSegmentIds(start, end int32) []int32 {
if !(0 <= start && start <= end && end <= d.n) {
return nil
}
var leftRes, rightRes []int32
for start, end = start+d.Offset, end+d.Offset; start < end; start, end = start>>1, end>>1 {
if start&1 == 1 {
leftRes = append(leftRes, start)
start++
}
if end&1 == 1 {
end--
rightRes = append(rightRes, end)
}
}
for i := len(rightRes) - 1; i >= 0; i-- {
leftRes = append(leftRes, rightRes[i])
}
return leftRes
}
//
//
// NewUnionFindWithCallback ...
func NewUnionFindArray(n int32) *_UnionFindArray {
parent, rank := make([]int32, n), make([]int32, n)
for i := int32(0); i < n; i++ {
parent[i] = i
rank[i] = 1
}
return &_UnionFindArray{
Part: n,
rank: rank,
n: n,
parent: parent,
}
}
type _UnionFindArray struct {
// 连通分量的个数
Part int32
rank []int32
n int32
parent []int32
}
func (ufa *_UnionFindArray) Union(key1, key2 int32) bool {
root1, root2 := ufa.Find(key1), ufa.Find(key2)
if root1 == root2 {
return false
}
if ufa.rank[root1] > ufa.rank[root2] {
root1, root2 = root2, root1
}
ufa.parent[root1] = root2
ufa.rank[root2] += ufa.rank[root1]
ufa.Part--
return true
}
func (ufa *_UnionFindArray) UnionWithCallback(key1, key2 int32, cb func(big, small int32)) bool {
root1, root2 := ufa.Find(key1), ufa.Find(key2)
if root1 == root2 {
return false
}
if ufa.rank[root1] > ufa.rank[root2] {
root1, root2 = root2, root1
}
ufa.parent[root1] = root2
ufa.rank[root2] += ufa.rank[root1]
ufa.Part--
cb(root2, root1)
return true
}
func (ufa *_UnionFindArray) Find(key int32) int32 {
for ufa.parent[key] != key {
ufa.parent[key] = ufa.parent[ufa.parent[key]]
key = ufa.parent[key]
}
return key
}
func (ufa *_UnionFindArray) IsConnected(key1, key2 int32) bool {
return ufa.Find(key1) == ufa.Find(key2)
}
func (ufa *_UnionFindArray) GetGroups() map[int32][]int32 {
groups := make(map[int32][]int32)
for i := int32(0); i < ufa.n; i++ {
root := ufa.Find(i)
groups[root] = append(groups[root], i)
}
return groups
}
func (ufa *_UnionFindArray) Size(key int32) int32 {
return ufa.rank[ufa.Find(key)]
}
func (ufa *_UnionFindArray) String() string {
sb := []string{"UnionFindArray:"}
for root, member := range ufa.GetGroups() {
cur := fmt.Sprintf("%d: %v", root, member)
sb = append(sb, cur)
}
sb = append(sb, fmt.Sprintf("Part: %d", ufa.Part))
return strings.Join(sb, "\n")
}