結果

問題 No.2626 Similar But Different Name
ユーザー tokusakuraitokusakurai
提出日時 2024-02-09 21:57:52
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 283 ms / 3,000 ms
コード長 11,332 bytes
コンパイル時間 2,376 ms
コンパイル使用メモリ 220,480 KB
実行使用メモリ 112,316 KB
最終ジャッジ日時 2024-09-28 15:14:12
合計ジャッジ時間 8,763 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 35
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
using maxheap = priority_queue<T>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <typename T>
int flg(T x, int i) {
return (x >> i) & 1;
}
int pct(int x) { return __builtin_popcount(x); }
int pct(ll x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
template <typename T>
void printn(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
int n = v.size();
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
return ret;
}
template <typename T>
void reorder(vector<T> &a, const vector<int> &ord) {
int n = a.size();
vector<T> b(n);
for (int i = 0; i < n; i++) b[i] = a[ord[i]];
swap(a, b);
}
template <typename T>
T floor(T x, T y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return (x >= 0 ? x / y : (x - y + 1) / y);
}
template <typename T>
T ceil(T x, T y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return (x >= 0 ? (x + y - 1) / y : x / y);
}
template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first + q.first, p.second + q.second);
}
template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first - q.first, p.second - q.second);
}
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
S a;
T b;
is >> a >> b;
p = make_pair(a, b);
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
return os << p.first << ' ' << p.second;
}
struct io_setup {
io_setup() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(15);
}
} io_setup;
constexpr int inf = (1 << 30) - 1;
constexpr ll INF = (1LL << 60) - 1;
// constexpr int MOD = 1000000007;
constexpr int MOD = 998244353;
template <typename T>
struct Fast_Fourier_Transform {
using comp = complex<double>;
static double pi;
static vector<comp> r, ir;
Fast_Fourier_Transform() {}
static void init() {
if (!r.empty()) return;
r.resize(30), ir.resize(30);
for (int i = 0; i < 30; i++) {
r[i] = -polar(1.0, pi / (1 << (i + 1))); // r[i] := 1 2^(i+2)
ir[i] = -polar(1.0, -pi / (1 << (i + 1))); // ir[i] := 1/r[i]
}
}
static vector<comp> to_comp(vector<T> a) {
vector<comp> ret(a.size());
for (int i = 0; i < (int)a.size(); i++) ret[i] = comp(a[i], 0.0);
return ret;
}
static vector<T> to_T(vector<comp> a) {
vector<T> ret(a.size(), 0);
for (int i = 0; i < (int)a.size(); i++) ret[i] = a[i].real() + 0.1; //
// for(int i = 0; i < (int)a.size(); i++) ret[i] = a[i].real(); //
return ret;
}
static void fft(vector<comp> &a) {
init();
int n = a.size();
assert((n & (n - 1)) == 0);
for (int k = n; k >>= 1;) {
comp w = 1;
for (int s = 0, t = 0; s < n; s += 2 * k) {
for (int i = s, j = s + k; i < s + k; i++, j++) {
comp x = a[i], y = w * a[j];
a[i] = x + y, a[j] = x - y;
}
w *= r[__builtin_ctz(++t)];
}
}
}
static void ifft(vector<comp> &a) {
init();
int n = a.size();
assert((n & (n - 1)) == 0);
a.resize(n);
for (int k = 1; k < n; k <<= 1) {
comp w = 1;
for (int s = 0, t = 0; s < n; s += 2 * k) {
for (int i = s, j = s + k; i < s + k; i++, j++) {
comp x = a[i], y = a[j];
a[i] = x + y, a[j] = w * (x - y);
}
w *= ir[__builtin_ctz(++t)];
}
}
for (auto &e : a) e /= n;
}
static vector<T> convolve(vector<T> a, vector<T> b) {
int k = (int)a.size() + (int)b.size() - 1, n = 1;
while (n < k) n <<= 1;
vector<comp> A = to_comp(a), B = to_comp(b);
A.resize(n), B.resize(n);
fft(A), fft(B);
for (int i = 0; i < n; i++) A[i] *= B[i];
ifft(A);
vector<T> c = to_T(A);
c.resize(k);
return c;
}
};
template <typename T>
double Fast_Fourier_Transform<T>::pi = acos(-1.0);
template <typename T>
vector<complex<double>> Fast_Fourier_Transform<T>::r = vector<complex<double>>();
template <typename T>
vector<complex<double>> Fast_Fourier_Transform<T>::ir = vector<complex<double>>();
using FFT = Fast_Fourier_Transform<long long>;
struct Random_Number_Generator {
mt19937_64 mt;
Random_Number_Generator() : mt(chrono::steady_clock::now().time_since_epoch().count()) {}
int64_t operator()(int64_t l, int64_t r) {
uniform_int_distribution<int64_t> dist(l, r - 1);
return dist(mt);
}
int64_t operator()(int64_t r) { return (*this)(0, r); }
} rng;
using ull = unsigned long long;
const ull mod = (1ULL << 61) - 1;
ull hash_mod(ull x) {
ull ret = (x >> 61) + (x & mod);
return ret - (ret >= mod ? mod : 0);
}
ull hash_mul(ull x, ull y) {
x = hash_mod(x), y = hash_mod(y);
ull x1 = x >> 31, x2 = x & ((1ULL << 31) - 1), y1 = y >> 31, y2 = y & ((1ULL << 31) - 1);
ull z = x1 * y2 + x2 * y1, z1 = z >> 30, z2 = z & ((1ULL << 30) - 1);
return hash_mod(x1 * y1 * 2 + x2 * y2 + z1 + (z2 << 31));
}
ull hash_pow(ull x, ull n) {
ull ret = 1;
for (; n > 0; n >>= 1, x = hash_mul(x, x)) {
if (n & 1) ret = hash_mul(ret, x);
}
return ret;
}
// m base
ull generate_base(ull m = (1ULL << 50)) {
while (true) {
ull k = rng(mod);
if (gcd(mod - 1, k) != 1) continue;
ull base = hash_pow(3, k);
if (base >= m) return base;
}
return 0;
}
// 0
template <typename T = string>
struct Rolling_Hash {
const int n;
const ull base; //
vector<ull> hashed, pw;
Rolling_Hash(const T &s, ull base) : n(s.size()), base(base) {
hashed.assign(n + 1, 0), pw.assign(n + 1, 1);
for (int i = 0; i < n; i++) {
pw[i + 1] = hash_mul(pw[i], base);
hashed[i + 1] = hash_mul(hashed[i], base) + s[i];
if (hashed[i + 1] >= mod) hashed[i + 1] -= mod;
}
}
// [l,r)
ull get_hash(int l, int r) const {
ull ret = hashed[r] + mod - hash_mul(hashed[l], pw[r - l]);
return ret - (ret >= mod ? mod : 0);
}
ull get_all_hash() const { return hashed[n]; }
// s[l1:r1] s[l2:r2]
int lcp(int l1, int r1, int l2, int r2) {
int ok = 0, ng = min(r1 - l1, r2 - l2) + 1;
while (ng - ok > 1) {
int mid = (ok + ng) / 2;
(get_hash(l1, l1 + mid) == get_hash(l2, l2 + mid) ? ok : ng) = mid;
}
return ok;
}
// s[l1:r1] s[l2:r2] (-1 : <, 0 : =, 1 : >)
int comp(int l1, int r1, int l2, int r2) {
int d = lcp(l1, r1, l2, r2);
if (r1 == l1 + d && r2 == l2 + d) return 0;
if (r1 == l1 + d) return -1;
if (r2 == l2 + d) return 1;
return get_hash(l1 + d, l1 + d + 1) < get_hash(l2 + d, l2 + d + 1) ? -1 : 1;
}
};
template <typename T>
struct Fixed_Size_Hash {
const int n;
const ull base;
vector<T> v;
ull hashed;
vector<ull> pw;
Fixed_Size_Hash(const vector<T> &v, ull base) : n(v.size()), base(base), v(v) {
hashed = 0;
pw.assign(n + 1, 1);
for (int i = 0; i < n; i++) {
pw[i + 1] = hash_mul(pw[i], base);
hashed = hash_mul(hashed, base) + v[i];
if (hashed >= mod) hashed -= mod;
}
}
Fixed_Size_Hash(int m, const T &x, ull base) : Fixed_Size_Hash(vector<T>(m, x), base) {}
ull add(int i, const T &x) {
hashed += hash_mul(pw[n - 1 - i], mod + x);
if (hashed >= mod) hashed -= mod;
v[i] += x;
return hashed;
}
ull change(int i, const T &x) { return add(i, x - v[i]); }
ull get_hash() const { return hashed; }
};
void solve() {
int N, M, K;
cin >> N >> M >> K;
string S, T;
cin >> S >> T;
swap(S, T), swap(N, M);
auto ch = [&](char c) {
if (!islower(c)) return char(c + 'a' - 'A');
return c;
};
vector<ll> a1(N, 0), b1(M, 0), a2(N, 0), b2(M, 0);
rep(i, N) {
if (islower(S[i])) {
a1[i] = 1;
} else {
a2[i] = 1;
}
S[i] = ch(S[i]);
}
rep(i, M) {
if (islower(T[i])) {
b1[i] = 1;
} else {
b2[i] = 1;
}
T[i] = ch(T[i]);
}
ull base = generate_base();
Rolling_Hash rhs(S, base), rht(T, base);
ull h = rhs.get_all_hash();
reverse(all(a1)), reverse(all(a2));
auto c1 = FFT::convolve(a1, b1);
auto c2 = FFT::convolve(a2, b2);
// print(a), print(b), print(c);
int ans = 0;
rep(i, M - N + 1) {
if (rht.get_hash(i, i + N) == h) {
int len = c1[i + N - 1] + c2[i + N - 1];
len = N - len;
if (1 <= len && len <= K) ans++;
}
}
cout << ans << '\n';
}
int main() {
int T = 1;
// cin >> T;
while (T--) solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0