結果
| 問題 |
No.2626 Similar But Different Name
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2024-02-09 22:10:01 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 133 ms / 3,000 ms |
| コード長 | 6,141 bytes |
| コンパイル時間 | 3,457 ms |
| コンパイル使用メモリ | 268,084 KB |
| 実行使用メモリ | 53,016 KB |
| 最終ジャッジ日時 | 2024-09-28 15:25:52 |
| 合計ジャッジ時間 | 6,764 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 35 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
namespace fast_fourier_transform {
using Real = double;
struct Complex {
Real re, im;
explicit Complex(const Real re = 0, const Real im = 0) : re(re), im(im) {}
inline Complex operator+(const Complex& x) const {
return Complex(re + x.re, im + x.im);
}
inline Complex operator-(const Complex& x) const {
return Complex(re - x.re, im - x.im);
}
inline Complex operator*(const Complex& x) const {
return Complex(re * x.re - im * x.im, re * x.im + im * x.re);
}
inline Complex mul_real(const Real r) const {
return Complex(re * r, im * r);
}
inline Complex mul_pin(const Real r) const {
return Complex(-im * r, re * r);
}
inline Complex conj() const { return Complex(re, -im); }
};
std::vector<int> butterfly{0};
std::vector<std::vector<Complex>> zeta{{Complex(1, 0)}};
void init(const int n) {
const int prev_n = butterfly.size();
if (n <= prev_n) return;
butterfly.resize(n);
const int prev_lg = zeta.size();
const int lg = std::countr_zero(static_cast<unsigned int>(n));
for (int i = 1; i < prev_n; ++i) {
butterfly[i] <<= lg - prev_lg;
}
for (int i = prev_n; i < n; ++i) {
butterfly[i] = (butterfly[i >> 1] >> 1) | ((i & 1) << (lg - 1));
}
zeta.resize(lg);
for (int i = prev_lg; i < lg; ++i) {
zeta[i].resize(1 << i);
const Real angle = -3.14159265358979323846 * 2 / (1 << (i + 1));
for (int j = 0; j < (1 << (i - 1)); ++j) {
zeta[i][j << 1] = zeta[i - 1][j];
const Real theta = angle * ((j << 1) + 1);
zeta[i][(j << 1) + 1] = Complex(std::cos(theta), std::sin(theta));
}
}
}
void dft(std::vector<Complex>* a) {
assert(std::has_single_bit(a->size()));
const int n = a->size();
init(n);
const int shift =
std::countr_zero(butterfly.size()) - std::countr_zero(a->size());
for (int i = 0; i < n; ++i) {
const int j = butterfly[i] >> shift;
if (i < j) std::swap((*a)[i], (*a)[j]);
}
for (int block = 1, den = 0; block < n; block <<= 1, ++den) {
for (int i = 0; i < n; i += (block << 1)) {
for (int j = 0; j < block; ++j) {
const Complex tmp = (*a)[i + j + block] * zeta[den][j];
(*a)[i + j + block] = (*a)[i + j] - tmp;
(*a)[i + j] = (*a)[i + j] + tmp;
}
}
}
}
template <typename T>
std::vector<Complex> real_dft(const std::vector<T>& a) {
const int n = a.size();
std::vector<Complex> c(std::bit_ceil(a.size()));
for (int i = 0; i < n; ++i) {
c[i].re = a[i];
}
dft(&c);
return c;
}
void idft(std::vector<Complex>* a) {
const int n = a->size();
dft(a);
std::reverse(std::next(a->begin()), a->end());
const Real r = 1. / n;
std::transform(a->begin(), a->end(), a->begin(),
[r](const Complex& c) -> Complex { return c.mul_real(r); });
}
template <typename T>
std::vector<Real> convolution(const std::vector<T>& a,
const std::vector<T>& b) {
const int a_size = a.size(), b_size = b.size(), c_size = a_size + b_size - 1;
const int n = std::max(std::bit_ceil(static_cast<unsigned int>(c_size)), 2U);
const int hlf = n >> 1, qtr = hlf >> 1;
std::vector<Complex> c(n);
for (int i = 0; i < a_size; ++i) {
c[i].re = a[i];
}
for (int i = 0; i < b_size; ++i) {
c[i].im = b[i];
}
dft(&c);
c.front() = Complex(c.front().re * c.front().im, 0);
for (int i = 1; i < hlf; ++i) {
const Complex i_square = c[i] * c[i], j_square = c[n - i] * c[n - i];
c[i] = (j_square.conj() - i_square).mul_pin(0.25);
c[n - i] = (i_square.conj() - j_square).mul_pin(0.25);
}
c[hlf] = Complex(c[hlf].re * c[hlf].im, 0);
c.front() = (c.front() + c[hlf]
+ (c.front() - c[hlf]).mul_pin(1)).mul_real(0.5);
const int den = std::countr_zero(static_cast<unsigned int>(hlf));
for (int i = 1; i < qtr; ++i) {
const int j = hlf - i;
const Complex tmp1 = c[i] + c[j].conj();
const Complex tmp2 = ((c[i] - c[j].conj()) * zeta[den][j]).mul_pin(1);
c[i] = (tmp1 - tmp2).mul_real(0.5);
c[j] = (tmp1 + tmp2).mul_real(0.5).conj();
}
if (qtr > 0) c[qtr] = c[qtr].conj();
c.resize(hlf);
idft(&c);
std::vector<Real> res(c_size);
for (int i = 0; i < c_size; i += 2) {
res[i] = c[i >> 1].re;
}
for (int i = 1; i < c_size; i += 2) {
res[i] = c[i >> 1].im;
}
return res;
}
} // namespace fast_fourier_transform
template <typename T>
std::vector<int> z_algorithm(const T &s) {
const int n = s.size();
std::vector<int> res(n, 0);
for (int i = 1, j = 0; i < n; ++i) {
if (i + res[i - j] < j + res[j]) {
res[i] = res[i - j];
} else {
res[i] = std::max(j + res[j] - i, 0);
while (i + res[i] < n && s[i + res[i]] == s[res[i]]) ++res[i];
j = i;
}
}
res[0] = n;
return res;
}
int main() {
int n, m, k; string s, t; cin >> n >> m >> k >> s >> t;
vector<int> a(n), b(m);
REP(i, n) a[i] = (islower(s[i]) ? 1 : -1);
REP(i, m) b[i] = (islower(t[i]) ? 1 : -1);
ranges::reverse(b);
const auto c = fast_fourier_transform::convolution(a, b);
for (char& c : s) c = tolower(c);
for (char& c : t) c = tolower(c);
const vector<int> z = z_algorithm(t + '$' + s);
int ans = 0;
REP(i, n) {
if (z[m + 1 + i] == m && m - k * 2 <= llround(c[m - 1 + i]) && llround(c[m - 1 + i]) <= m - 2) ++ans;
}
cout << ans << '\n';
return 0;
}
emthrm