結果

問題 No.2626 Similar But Different Name
ユーザー 👑 tute7627tute7627
提出日時 2024-02-09 22:22:17
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 209 ms / 3,000 ms
コード長 19,538 bytes
コンパイル時間 2,664 ms
コンパイル使用メモリ 229,200 KB
実行使用メモリ 80,304 KB
最終ジャッジ日時 2024-09-28 15:37:05
合計ジャッジ時間 7,474 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 1 ms
6,820 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 1 ms
6,820 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 2 ms
6,820 KB
testcase_10 AC 2 ms
6,816 KB
testcase_11 AC 2 ms
6,816 KB
testcase_12 AC 2 ms
6,816 KB
testcase_13 AC 3 ms
6,816 KB
testcase_14 AC 3 ms
6,816 KB
testcase_15 AC 3 ms
6,820 KB
testcase_16 AC 3 ms
6,820 KB
testcase_17 AC 2 ms
6,820 KB
testcase_18 AC 206 ms
80,304 KB
testcase_19 AC 102 ms
41,792 KB
testcase_20 AC 95 ms
41,860 KB
testcase_21 AC 95 ms
41,788 KB
testcase_22 AC 199 ms
70,352 KB
testcase_23 AC 196 ms
70,464 KB
testcase_24 AC 201 ms
67,444 KB
testcase_25 AC 200 ms
68,832 KB
testcase_26 AC 201 ms
70,108 KB
testcase_27 AC 199 ms
70,372 KB
testcase_28 AC 199 ms
70,052 KB
testcase_29 AC 195 ms
67,356 KB
testcase_30 AC 192 ms
68,424 KB
testcase_31 AC 196 ms
69,580 KB
testcase_32 AC 196 ms
70,208 KB
testcase_33 AC 199 ms
71,000 KB
testcase_34 AC 192 ms
68,648 KB
testcase_35 AC 195 ms
69,712 KB
testcase_36 AC 195 ms
67,436 KB
testcase_37 AC 209 ms
80,236 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

//#define _GLIBCXX_DEBUG

//#pragma GCC target("avx2")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")

#include<bits/stdc++.h>
using namespace std;


#ifdef LOCAL
#include <debug_print.hpp>
#define OUT(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define OUT(...) (static_cast<void>(0))
#endif

#define endl '\n'
#define lfs cout<<fixed<<setprecision(15)
#define ALL(a)  (a).begin(),(a).end()
#define ALLR(a)  (a).rbegin(),(a).rend()
#define UNIQUE(a) (a).erase(unique((a).begin(),(a).end()),(a).end())
#define spa << " " <<
#define fi first
#define se second
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define EB emplace_back
#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)
#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)
using ll = long long;
using ld = long double;
const ll MOD1 = 1e9+7;
const ll MOD9 = 998244353;
const ll INF = 1e18;
using P = pair<ll, ll>;
template<typename T> using PQ = priority_queue<T>;
template<typename T> using QP = priority_queue<T,vector<T>,greater<T>>;
template<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}
template<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}
ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}
void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;}
void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;}
void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;}
template<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;}  
template<typename T1,typename T2,typename T3>void anss(T1 x,T2 y,T3 z){ans(x!=y,x,z);};  
template<typename T>void debug(const T &v,ll h,ll w,string sv=" "){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout<<sv<<v[i][j];cout<<endl;}};
template<typename T>void debug(const T &v,ll n,string sv=" "){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout<<sv<<v[i];cout<<endl;};
template<typename T>void debug(const vector<T>&v){debug(v,v.size());}
template<typename T>void debug(const vector<vector<T>>&v){for(auto &vv:v)debug(vv,vv.size());}
template<typename T>void debug(stack<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(queue<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(deque<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop_front();}cout<<endl;}
template<typename T>void debug(PQ<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(QP<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(const set<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
template<typename T>void debug(const multiset<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
template<typename T,size_t size>void debug(const array<T, size> &a){for(auto z:a)cout<<z<<" ";cout<<endl;}
template<typename T,typename V>void debug(const map<T,V>&v){for(auto z:v)cout<<"["<<z.first<<"]="<<z.second<<",";cout<<endl;}
template<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}
vector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};
template<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}
template<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}
template<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << "(" << p.first << "," << p.second << ")";}
template<typename T>ostream &operator<<(ostream &os, const vector<T> &v){os<<"[";for(auto &z:v)os << z << ",";os<<"]"; return os;}
template<typename T>void rearrange(vector<int>&ord, vector<T>&v){
  auto tmp = v;
  for(int i=0;i<tmp.size();i++)v[i] = tmp[ord[i]];
}
template<typename Head, typename... Tail>void rearrange(vector<int>&ord,Head&& head, Tail&&... tail){
  rearrange(ord, head);
  rearrange(ord, tail...);
}
template<typename T> vector<int> ascend(const vector<T>&v){
  vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
  sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],i)<make_pair(v[j],j);});
  return ord;
}
template<typename T> vector<int> descend(const vector<T>&v){
  vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
  sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],-i)>make_pair(v[j],-j);});
  return ord;
}
template<typename T> vector<T> inv_perm(const vector<T>&ord){
  vector<T>inv(ord.size());
  for(int i=0;i<ord.size();i++)inv[ord[i]] = i;
  return inv;
}
ll FLOOR(ll n,ll div){assert(div>0);return n>=0?n/div:(n-div+1)/div;}
ll CEIL(ll n,ll div){assert(div>0);return n>=0?(n+div-1)/div:n/div;}
ll digitsum(ll n){ll ret=0;while(n){ret+=n%10;n/=10;}return ret;}
ll modulo(ll n,ll d){return (n%d+d)%d;};
template<typename T>T min(const vector<T>&v){return *min_element(v.begin(),v.end());}
template<typename T>T max(const vector<T>&v){return *max_element(v.begin(),v.end());}
template<typename T>T acc(const vector<T>&v){return accumulate(v.begin(),v.end(),T(0));};
template<typename T>T reverse(const T &v){return T(v.rbegin(),v.rend());};
//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());
int popcount(ll x){return __builtin_popcountll(x);};
int poplow(ll x){return __builtin_ctzll(x);};
int pophigh(ll x){return 63 - __builtin_clzll(x);};
template<typename T>T poll(queue<T> &q){auto ret=q.front();q.pop();return ret;};
template<typename T>T poll(priority_queue<T> &q){auto ret=q.top();q.pop();return ret;};
template<typename T>T poll(QP<T> &q){auto ret=q.top();q.pop();return ret;};
template<typename T>T poll(stack<T> &s){auto ret=s.top();s.pop();return ret;};
ll MULT(ll x,ll y){if(LLONG_MAX/x<=y)return LLONG_MAX;return x*y;}
ll POW2(ll x, ll k){ll ret=1,mul=x;while(k){if(mul==LLONG_MAX)return LLONG_MAX;if(k&1)ret=MULT(ret,mul);mul=MULT(mul,mul);k>>=1;}return ret;}
ll POW(ll x, ll k){ll ret=1;for(int i=0;i<k;i++){if(LLONG_MAX/x<=ret)return LLONG_MAX;ret*=x;}return ret;}
std::ostream &operator<<(std::ostream &dest, __int128_t value) {
  std::ostream::sentry s(dest);
  if (s) {
    __uint128_t tmp = value < 0 ? -value : value;
    char buffer[128];
    char *d = std::end(buffer);
    do {
      --d;
      *d = "0123456789"[tmp % 10];
      tmp /= 10;
    } while (tmp != 0);
    if (value < 0) {
      --d;
      *d = '-';
    }
    int len = std::end(buffer) - d;
    if (dest.rdbuf()->sputn(d, len) != len) {
      dest.setstate(std::ios_base::badbit);
    }
  }
  return dest;
}
namespace converter{
  int dict[500];
  const string lower="abcdefghijklmnopqrstuvwxyz";
  const string upper="ABCDEFGHIJKLMNOPQRSTUVWXYZ";
  const string digit="0123456789";
  const string digit1="123456789";
  void regi_str(const string &t){
    for(int i=0;i<t.size();i++){
      dict[t[i]]=i;
    }
  }
  void regi_int(const string &t){
    for(int i=0;i<t.size();i++){
      dict[i]=t[i];
    }
  }
  vector<int>to_int(const string &s,const string &t){
    regi_str(t);
    vector<int>ret(s.size());
    for(int i=0;i<s.size();i++){
      ret[i]=dict[s[i]];
    }
    return ret;
  }
  vector<int>to_int(const string &s){
    auto t=s;
    sort(t.begin(),t.end());
    t.erase(unique(t.begin(),t.end()),t.end());
    return to_int(s,t);
  }
  
  vector<vector<int>>to_int(const vector<string>&s,const string &t){
    regi_str(t);
    vector<vector<int>>ret(s.size(),vector<int>(s[0].size()));
    for(int i=0;i<s.size();i++){
      for(int j=0;j<s[0].size();j++){
        ret[i][j]=dict[s[i][j]];
      }
    }
    return ret;
  }
  vector<vector<int>>to_int(const vector<string>&s){
    string t;
    for(int i=0;i<s.size();i++){
      t+=s[i];
    }
    sort(t.begin(),t.end());t.erase(unique(t.begin(),t.end()),t.end());
    return to_int(s,t);
  }
  string to_str(const vector<int>&s,const string &t){
    regi_int(t);
    string ret;
    for(auto z:s)ret+=dict[z];
    return ret;
  }
  vector<string> to_str(const vector<vector<int>>&s,const string &t){
    regi_int(t);
    vector<string>ret(s.size());
    for(int i=0;i<s.size();i++){
      for(auto z:s[i])ret[i]+=dict[z];
    }
    return ret;
  }
}
template< typename T = int >
struct edge {
  int to;
  T cost;
  int id;
  edge():to(-1),id(-1){};
  edge(int to, T cost = 1, int id = -1):to(to), cost(cost), id(id){}
  operator int() const { return to; }
};

template<typename T>
using Graph = vector<vector<edge<T>>>;
template<typename T>
Graph<T>revgraph(const Graph<T> &g){
  Graph<T>ret(g.size());
  for(int i=0;i<g.size();i++){
    for(auto e:g[i]){
      int to = e.to;
      e.to = i;
      ret[to].push_back(e);
    }
  }
  return ret;
}
template<typename T>
Graph<T> readGraph(int n,int m,int indexed=1,bool directed=false,bool weighted=false){
  Graph<T> ret(n);
  for(int es = 0; es < m; es++){
    int u,v;
    T w=1;
    cin>>u>>v;u-=indexed,v-=indexed;
    if(weighted)cin>>w;
    ret[u].emplace_back(v,w,es);
    if(!directed)ret[v].emplace_back(u,w,es);
  }
  return ret;
}
template<typename T>
Graph<T> readParent(int n,int indexed=1,bool directed=true){
  Graph<T>ret(n);
  for(int i=1;i<n;i++){
    int p;cin>>p;
    p-=indexed;
    ret[p].emplace_back(i);
    if(!directed)ret[i].emplace_back(p);
  }
  return ret;
}
template< int mod >
struct ModInt {
  int x;

  ModInt() : x(0) {}

  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

  ModInt &operator+=(const ModInt &p) {
    if((x += p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator-=(const ModInt &p) {
    if((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator*=(const ModInt &p) {
    x = (int) (1LL * x * p.x % mod);
    return *this;
  }

  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt operator-() const { return ModInt(-x); }

  friend ModInt operator+(const ModInt& lhs, const ModInt& rhs) {
        return ModInt(lhs) += rhs;
  }
  friend ModInt operator-(const ModInt& lhs, const ModInt& rhs) {
        return ModInt(lhs) -= rhs;
  }
  friend ModInt operator*(const ModInt& lhs, const ModInt& rhs) {
        return ModInt(lhs) *= rhs;
  }
  friend ModInt operator/(const ModInt& lhs, const ModInt& rhs) {
        return ModInt(lhs) /= rhs;
  }

  bool operator==(const ModInt &p) const { return x == p.x; }

  bool operator!=(const ModInt &p) const { return x != p.x; }

  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }

  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  pair<int,int>frac(){
    for(int j=1;j<=300;j++){
      for(int i=-300;i<=300;i++){
        if(ModInt(i)/j==*this){
          return make_pair(i,j);
        }
      }
    }
    return make_pair(-1,-1);
  }
  friend ostream &operator<<(ostream &os, const ModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt< mod >(t);
    return (is);
  }

  static int get_mod() { return mod; }
};

template< typename T >
struct Combination {
  vector< T > _fact, _rfact, _inv;

  Combination(ll sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {
    _fact[0] = _rfact[sz] = _inv[0] = 1;
    for(ll i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;
    _rfact[sz] /= _fact[sz];
    for(ll i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);
    for(ll i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];
  }

  inline T fact(ll k) const { return _fact[k]; }

  inline T rfact(ll k) const { return _rfact[k]; }

  inline T inv(ll k) const { return _inv[k]; }

  T P(ll n, ll r) const {
    if(r < 0 || n < r) return 0;
    return fact(n) * rfact(n - r);
  }

  T C(ll p, ll q) const {
    if(q < 0 || p < q) return 0;
    return fact(p) * rfact(q) * rfact(p - q);
  }
  
  T RC(ll p, ll q) const {
    if(q < 0 || p < q) return 0;
    return rfact(p) * fact(q) * fact(p - q);
  }

  T H(ll n, ll r) const {
    if(n < 0 || r < 0) return (0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
  //+1がm個、-1がn個で prefix sumが常にk以上
  T catalan(ll m,ll n,ll k){
    if(n>m-k)return 0;
    else return C(n+m,m)-C(n+m,n+k-1);
  }
};
using modint = ModInt< MOD9 >;modint mpow(ll n, ll x){return modint(n).pow(x);}modint mpow(modint n, ll x){return n.pow(x);}
//using modint=ld;modint mpow(ll n, ll x){return pow(n,x);}modint mpow(modint n, ll x){return pow(n,x);}
using Comb=Combination<modint>;
template< typename Mint >
struct NumberTheoreticTransformFriendlyModInt {
  static vector< Mint > dw, idw;
  static int max_base;
  static Mint root;
  NumberTheoreticTransformFriendlyModInt() = default;
  static void init() {
    const unsigned mod = Mint::get_mod();
    assert(mod >= 3 && mod % 2 == 1);
    auto tmp = mod - 1;
    max_base = 0;
    while(tmp % 2 == 0) tmp >>= 1, max_base++;
    root = 2;
    while(root.pow((mod - 1) >> 1) == 1) root += 1;
    assert(root.pow(mod - 1) == 1);
    dw.resize(max_base);
    idw.resize(max_base);
    for(int i = 0; i < max_base; i++) {
      dw[i] = -root.pow((mod - 1) >> (i + 2));
      idw[i] = Mint(1) / dw[i];
    }
  }
 
  static void ntt(vector< Mint > &a) {
    const int n = (int) a.size();
    assert((n & (n - 1)) == 0);
    assert(__builtin_ctz(n) <= max_base);
    for(int m = n; m >>= 1;) {
      Mint w = 1;
      for(int s = 0, k = 0; s < n; s += 2 * m) {
        for(int i = s, j = s + m; i < s + m; ++i, ++j) {
          auto x = a[i], y = a[j] * w;
          a[i] = x + y, a[j] = x - y;
        }
        w *= dw[__builtin_ctz(++k)];
      }
    }
  }
 
  static void intt(vector< Mint > &a, bool f = true) {
    const int n = (int) a.size();
    assert((n & (n - 1)) == 0);
    assert(__builtin_ctz(n) <= max_base);
    for(int m = 1; m < n; m *= 2) {
      Mint w = 1;
      for(int s = 0, k = 0; s < n; s += 2 * m) {
        for(int i = s, j = s + m; i < s + m; ++i, ++j) {
          auto x = a[i], y = a[j];
          a[i] = x + y, a[j] = (x - y) * w;
        }
        w *= idw[__builtin_ctz(++k)];
      }
    }
    if(f) {
      Mint inv_sz = Mint(1) / n;
      for(int i = 0; i < n; i++) a[i] *= inv_sz;
    }
  }
 
  static vector< Mint > multiply(vector< Mint > a, vector< Mint > b) {
    int need = a.size() + b.size() - 1;
    int nbase = 1;
    while((1 << nbase) < need) nbase++;
    int sz = 1 << nbase;
    a.resize(sz, 0);
    b.resize(sz, 0);
    ntt(a);
    ntt(b);
    Mint inv_sz = Mint(1) / sz;
    for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
    intt(a, false);
    a.resize(need);
    return a;
  }
};
template< typename Mint >
vector< Mint >  NumberTheoreticTransformFriendlyModInt<Mint>::dw = vector< Mint >();
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::idw = vector< Mint >();
template< typename Mint >
int NumberTheoreticTransformFriendlyModInt< Mint >::max_base = 0;
template< typename Mint >
Mint NumberTheoreticTransformFriendlyModInt< Mint >::root = 2;
 
 
//ret[i-j]=x[i]*y[j]
template<typename Conv, typename T>
vector<T>multiply_minus(vector<T>x,vector<T>y){
  reverse(y.begin(),y.end());
  auto tmp = Conv::multiply(x,y);
  vector<T>ret(x.size());
  for(int i = 0; i < x.size(); i++){
    ret[i] = tmp[y.size() - 1 + i];
  }
  return ret;
}
//
vector<ll>z_algorithm(vector<int> s){
  ll n = s.size();
  vector<ll>ret(n,0);
  ret[0] = n;
  ll p = 1,len = 0;
  while(p < n){
    while(p+len < n && s[len] == s[p+len])len++;
    ret[p] = len;
    if(len == 0){p++; continue;}
    ll k = 1;
    while(p+k < n && k+ret[k] < len)ret[p+k] = ret[k], k++;
    p += k, len -= k;
  }
  return ret;
}
namespace FastFourierTransform {
  using real = double;

  struct C {
    real x, y;

    C() : x(0), y(0) {}

    C(real x, real y) : x(x), y(y) {}

    inline C operator+(const C &c) const { return C(x + c.x, y + c.y); }

    inline C operator-(const C &c) const { return C(x - c.x, y - c.y); }

    inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); }

    inline C conj() const { return C(x, -y); }
  };

  const real PI = acosl(-1);
  int base = 1;
  vector< C > rts = { {0, 0},
                     {1, 0} };
  vector< int > rev = {0, 1};


  void ensure_base(int nbase) {
    if(nbase <= base) return;
    rev.resize(1 << nbase);
    rts.resize(1 << nbase);
    for(int i = 0; i < (1 << nbase); i++) {
      rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
    }
    while(base < nbase) {
      real angle = PI * 2.0 / (1 << (base + 1));
      for(int i = 1 << (base - 1); i < (1 << base); i++) {
        rts[i << 1] = rts[i];
        real angle_i = angle * (2 * i + 1 - (1 << base));
        rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
      }
      ++base;
    }
  }

  void fft(vector< C > &a, int n) {
    assert((n & (n - 1)) == 0);
    int zeros = __builtin_ctz(n);
    ensure_base(zeros);
    int shift = base - zeros;
    for(int i = 0; i < n; i++) {
      if(i < (rev[i] >> shift)) {
        swap(a[i], a[rev[i] >> shift]);
      }
    }
    for(int k = 1; k < n; k <<= 1) {
      for(int i = 0; i < n; i += 2 * k) {
        for(int j = 0; j < k; j++) {
          C z = a[i + j + k] * rts[j + k];
          a[i + j + k] = a[i + j] - z;
          a[i + j] = a[i + j] + z;
        }
      }
    }
  }

  vector< int64_t > multiply(const vector< int > &a, const vector< int > &b) {
    int need = (int) a.size() + (int) b.size() - 1;
    int nbase = 1;
    while((1 << nbase) < need) nbase++;
    ensure_base(nbase);
    int sz = 1 << nbase;
    vector< C > fa(sz);
    for(int i = 0; i < sz; i++) {
      int x = (i < (int) a.size() ? a[i] : 0);
      int y = (i < (int) b.size() ? b[i] : 0);
      fa[i] = C(x, y);
    }
    fft(fa, sz);
    C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
    for(int i = 0; i <= (sz >> 1); i++) {
      int j = (sz - i) & (sz - 1);
      C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
      fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
      fa[i] = z;
    }
    for(int i = 0; i < (sz >> 1); i++) {
      C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
      C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i];
      fa[i] = A0 + A1 * s;
    }
    fft(fa, sz >> 1);
    vector< int64_t > ret(need);
    for(int i = 0; i < need; i++) {
      ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
    }
    return ret;
  }
};

void solve(){
	ll res=0,buf=0;
  bool judge = true;

  ll n,m,k;cin>>n>>m>>k;
  string _s,_t;cin>>_s>>_t;
  auto s=converter::to_int(_s,converter::lower+converter::upper);
  auto t=converter::to_int(_t,converter::lower+converter::upper);
  vector<int>cv;
  for(auto c:t){
    cv.PB(c%26);
  }
  for(auto c:s){
    cv.PB(c%26);
  }

  auto zv=z_algorithm(cv);
  vector<int>x1(n),y1(m),x2(n),y2(m);
  rep(i,0,n){
    x1[i]=s[i]>=26;
    x2[i]=s[i]<26;
  }
  rep(i,0,m){
    y1[m-1-i]=t[i]<26;
    y2[m-1-i]=t[i]>=26;
  }
  auto z1=FastFourierTransform::multiply(x1,y1);
  auto z2=FastFourierTransform::multiply(x2,y2);
  ll ret=0;
  rep(i,0,n-m+1){
    auto t=z1[m-1+i]+z2[m-1+i];
    if(zv[i+m]>=m&&1<=t&&t<=k){
      ret++;
      OUT(i);
    }
  }
  cout<<ret<<endl;
}

int main(){
  cin.tie(nullptr);
  ios_base::sync_with_stdio(false);
  ll res=0,buf=0;
  bool judge = true;
  int T = 1;
  //cin>>T;
  while(T--){
    solve();
  }
  return 0;
}
0