結果
問題 | No.2626 Similar But Different Name |
ユーザー |
|
提出日時 | 2024-02-09 22:54:44 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 290 ms / 3,000 ms |
コード長 | 7,296 bytes |
コンパイル時間 | 3,485 ms |
コンパイル使用メモリ | 269,868 KB |
実行使用メモリ | 106,908 KB |
最終ジャッジ日時 | 2024-09-28 16:05:47 |
合計ジャッジ時間 | 9,035 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 35 |
ソースコード
// #pragma GCC optimize("O3,unroll-loops")#include <bits/stdc++.h>// #include <x86intrin.h>using namespace std;#if __cplusplus >= 202002Lusing namespace numbers;#endif// z[i]: largest prefix(suffix if Reverse) starting(ending if Reverse) at i that is also a proper prefix(suffix if Reverse)// O(n)template<class Char_Type, bool Reverse = false>vector<int> z_function(vector<Char_Type> s){if(Reverse) reverse(s.begin(), s.end());int n = (int)s.size();vector<int> z(n);for(auto i = 1, j = 0; i < n; ++ i){if(i < j + z[j]) z[i] = min(j + z[j] - i, z[i - j]);while(i + z[i] < n && s[z[i]] == s[i + z[i]]) ++ z[i];if(i + z[i] > j + z[j]) j = i;}if(Reverse) reverse(z.begin(), z.end());return z;}// Returns the list of positions of pattern in text// O(n + m)// Requres z_functiontemplate<class Char_Type>vector<int> find_all_matchings(const vector<Char_Type> &text, vector<Char_Type> pattern){int n = (int)text.size(), m = (int)pattern.size();pattern.insert(pattern.end(), text.begin(), text.end());auto p = z_function(pattern);vector<int> pos;for(auto i = m; i < n + m; ++ i) if(p[i] >= m) pos.push_back(i - m);return pos;}struct fast_fourier_transform_wrapper{using CD = complex<double>;using CLD = complex<long double>;// i \in [2^k, 2^{k+1}) holds w_{2^k+1}^{i-2^k}static vector<CD> root;static vector<CLD> root_ld;static void adjust_root(int n){if(root.empty()) root = {1, 1}, root_ld = {1, 1};for(auto k = (int)root.size(); k < n; k <<= 1){root.resize(n), root_ld.resize(n);auto theta = polar(1.0L, acos(-1.0L) / k);for(auto i = k; i < k << 1; ++ i) root[i] = root_ld[i] = i & 1 ? root_ld[i >> 1] * theta : root_ld[i >> 1];}}// O(n * log(n))static void transform(vector<CD> &p, bool invert = false){int n = (int)p.size();assert(n && __builtin_popcount(n) == 1);for(auto i = 1, j = 0; i < n; ++ i){int bit = n >> 1;for(; j & bit; bit >>= 1) j ^= bit;j ^= bit;if(i < j) swap(p[i], p[j]);}adjust_root(n);for(auto len = 1; len < n; len <<= 1) for(auto i = 0; i < n; i += len << 1) for(auto j = 0; j < len; ++ j){auto x = (double *)&root[j + len], y = (double *)&p[i + j + len];CD z(x[0] * y[0] - x[1] * y[1], x[0] * y[1] + x[1] * y[0]);p[len + i + j] = p[i + j] - z, p[i + j] += z;}if(invert){reverse(p.begin() + 1, p.end());auto inv_n = 1.0l / n;for(auto &x: p) x *= inv_n;}}static vector<CD> buffer1, buffer2;// O(n * m)template<class T>static vector<T> convolute_naive(const vector<T> &p, const vector<T> &q){vector<T> res(max((int)p.size() + (int)q.size() - 1, 0));for(auto i = 0; i < (int)p.size(); ++ i) for(auto j = 0; j < (int)q.size(); ++ j) res[i + j] += p[i] * q[j];return res;}// Safe for sum(p[i]^2 + q[i]^2) lg2(n) < 9e14// O(n * log(n))template<class T>static vector<T> convolute(const vector<T> &p, const vector<T> &q){if(min(p.size(), q.size()) < 60) return convolute_naive(p, q);int n = 1 << __lg((int)p.size() + (int)q.size() - 1) + 1;buffer1.assign(n, 0);for(auto i = 0; i < (int)p.size(); ++ i) buffer1[i].real(p[i]);for(auto i = 0; i < (int)q.size(); ++ i) buffer1[i].imag(q[i]);transform(buffer1);for(auto &x: buffer1) x *= x;buffer2.assign(n, 0);for(auto i = 0; i < n; ++ i) buffer2[i] = buffer1[i] - conj(buffer1[-i & n - 1]);transform(buffer2, true);vector<T> res((int)p.size() + (int)q.size() - 1);for(auto i = 0; i < (int)res.size(); ++ i) res[i] = is_integral_v<T> ? llround(buffer2[i].imag() / 4) : buffer2[i].imag() / 4;return res;}// O(n * log(n))static vector<CD> convolute_complex(const vector<CD> &p, const vector<CD> &q){if(min(p.size(), q.size()) < 60) return convolute_naive(p, q);int n = 1 << __lg((int)p.size() + (int)q.size() - 1) + 1;buffer1 = p, buffer2 = q;buffer1.resize(n), buffer2.resize(n);transform(buffer1), transform(buffer2);for(auto i = 0; i < n; ++ i) buffer1[i] *= buffer2[i];transform(buffer1, true);return {buffer1.begin(), buffer1.begin() + ((int)p.size() + (int)q.size() - 1)};}// Safe for 64-bit integer range// O(n * log(n))template<class T>static vector<T> convolute_splitting(const vector<T> &p, const vector<T> &q){if(min(p.size(), q.size()) < 80) return convolute_naive(p, q);int n = 1 << __lg((int)p.size() + (int)q.size() - 1) + 1;const int cut = 32000;buffer1.assign(n, 0);for(auto i = 0; i < (int)p.size(); ++ i) buffer1[i] = {(int)p[i] / cut, (int)p[i] % cut};transform(buffer1);buffer2.assign(n, 0);for(auto i = 0; i < (int)q.size(); ++ i) buffer2[i] = {(int)q[i] / cut, (int)q[i] % cut};transform(buffer2);for(auto i = 0; i <= n >> 1; ++ i){int j = -i & n - 1;if(i == j){tie(buffer1[i], buffer2[i]) = pair<CD, CD>{(buffer1[i] + conj(buffer1[i])) * buffer2[i] / 2.0,(buffer1[i] - conj(buffer1[i])) * buffer2[i] / 2i};}else{tie(buffer1[i], buffer2[i], buffer1[j], buffer2[j]) = tuple<CD, CD, CD, CD>{(buffer1[i] + conj(buffer1[j])) * buffer2[i] / 2.0,(buffer1[i] - conj(buffer1[j])) * buffer2[i] / 2i,(buffer1[j] + conj(buffer1[i])) * buffer2[j] / 2.0,(buffer1[j] - conj(buffer1[i])) * buffer2[j] / 2i};}}transform(buffer1, true);transform(buffer2, true);vector<T> res((int)p.size() + (int)q.size() - 1);for(auto i = 0; i < (int)res.size(); ++ i) res[i] = ((T)llround(buffer1[i].real()) * cut + (T)(llround(buffer1[i].imag()) + llround(buffer2[i].real()))) * cut + (T)llround(buffer2[i].imag());return res;}// Safe for 64-bit integer range// O(n * log(n))template<class T>static vector<T> convolute_splitting_mod(const vector<T> &p, const vector<T> &q){if(min(p.size(), q.size()) < 80) return convolute_naive(p, q);vector<int> p2(p.begin(), p.end()), q2(q.begin(), q.end());p2 = convolute_splitting(p2, q2);return {p2.begin(), p2.end()};}};vector<complex<double>> fast_fourier_transform_wrapper::root;vector<complex<long double>> fast_fourier_transform_wrapper::root_ld;vector<complex<double>> fast_fourier_transform_wrapper::buffer1;vector<complex<double>> fast_fourier_transform_wrapper::buffer2;using fft = fast_fourier_transform_wrapper;int main(){cin.tie(0)->sync_with_stdio(0);cin.exceptions(ios::badbit | ios::failbit);int n, m, k;vector<int> s, t, slow, tlow;cin >> n >> m >> k;for(auto rep = 2; rep; -- rep){string temp;cin >> temp;s.resize(n);slow.resize(n);for(auto i = 0; i < n; ++ i){s[i] = islower(temp[i]) ? temp[i] - 'a' : temp[i] - 'A' + 26;slow[i] = islower(temp[i]) ? temp[i] - 'a' : temp[i] - 'A';}swap(n, m);swap(s, t);swap(slow, tlow);}auto match = find_all_matchings(slow, tlow);vector<int> p(n), q(m);for(auto i = 0; i < n; ++ i){p[i] = s[i] < 26;}for(auto j = 0; j < m; ++ j){q[m - 1 - j] = t[j] >= 26;}vector<int> cnt(n);auto pq01 = fft::convolute(p, q);for(auto i = 0; i <= n - m; ++ i){cnt[i] += pq01[m - 1 + i];}for(auto &x: p){x = !x;}for(auto &x: q){x = !x;}auto pq10 = fft::convolute(p, q);for(auto i = 0; i <= n - m; ++ i){cnt[i] += pq10[m - 1 + i];}int res = 0;for(auto i: match){res += 1 <= cnt[i] && cnt[i] <= k;}cout << res << "\n";return 0;}/**/