結果
| 問題 |
No.2626 Similar But Different Name
|
| コンテスト | |
| ユーザー |
shino16
|
| 提出日時 | 2024-02-09 23:01:08 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 164 ms / 3,000 ms |
| コード長 | 38,159 bytes |
| コンパイル時間 | 4,414 ms |
| コンパイル使用メモリ | 298,168 KB |
| 実行使用メモリ | 46,940 KB |
| 最終ジャッジ日時 | 2024-09-28 16:11:27 |
| 合計ジャッジ時間 | 8,200 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 35 |
ソースコード
#line 2 "lib/prelude.hpp"
// #ifndef LOCAL
// #pragma GCC optimize("O3")
// #endif
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vi = vector<int>;
using vvi = vector<vector<int>>;
using vll = vector<ll>;
using vvll = vector<vector<ll>>;
using vc = vector<char>;
#define rep2(i, m, n) for (auto i = (m); i < (n); i++)
#define rep(i, n) rep2(i, 0, n)
#define repr2(i, m, n) for (auto i = (n); i-- > (m);)
#define repr(i, n) repr2(i, 0, n)
#define all(x) begin(x), end(x)
template <class T> auto ndvec(int n, T e) { return vector(n, e); }
template <class... Ts> auto ndvec(int n, Ts... e) { return vector(n, ndvec(e...)); }
#if __cpp_lib_ranges
namespace R = std::ranges;
namespace V = std::views;
#endif
#line 3 "lib/io.hpp"
struct int1 {
int val; int1(int a = 1) : val(a - 1) {}
operator int() const { return val; }
};
template <size_t BufSize = 1 << 26> class stdin_reader {
public: stdin_reader() { buf[fread(buf, 1, sizeof(buf), stdin)] = 0; } template <class T> enable_if_t<is_integral_v<T>> read(T& x) { skip(); [[maybe_unused]] bool neg = false; if constexpr (is_signed_v<T>) neg = *p == '-' ? (p++, true) : false; x = 0; while (*p > ' ') x = x * 10 + (*p++ & 0x0F); if constexpr (is_signed_v<T>) x = neg ? -x : x; } template <class T> void_t<decltype(&T::val)> read(T& x) { x = T((unsigned)(*this)); } void read(char &c) { skip(); c = *p++; } void read(char*& q) { skip(); q = p; while (*p > ' ') p++; *p = 0; } template <size_t N> void read(char (&s)[N]) { read(s); } void read(string& s) { skip(); char* p0 = p; while (*p > ' ') p++; s.assign(p0, p); } template <class T, void_t<decltype(tuple_size<T>::value)>* = nullptr> void read(T& x) { read_tuple_impl(x, make_index_sequence<tuple_size_v<T>>{}); } template <class T, class U> void read(pair<T, U>& x) { read(x.first), read(x.second); } template <class T, size_t N> void read(T (&a)[N]) { for (auto& e : a) read(e); } template <class T> operator T() { T x; return read(x), x; } template <class... Ts> void operator()(Ts&... xs) { (read(xs), ...); } int operator--() { return (int)*this - 1; } template <class T> T* arr(int n) { T* p = new T[n + 1]; rep(i, n) read(p[i]); return p; } template <class T> void vec(vector<T>& v, int n) { v.resize(n); for (auto& e : v) read(e); } template <class T> vector<T> vec(int n) { vector<T> v; return vec(v, n), v; } auto vi(int n) { return vec<int>(n); } auto vi1(int n) { auto v = vec<int>(n); rep(i, n) v[i]--; return v; } auto vll(int n) { return vec<ll>(n); } template <class... Ts> tuple<vector<Ts>...> vecs(int n) { tuple<vector<Ts>...> res; vecs_impl(res, n, make_index_sequence<sizeof...(Ts)>{}); return res; } template <class T> void vvec(vector<vector<T>>& v, int n, int m) { v.resize(n); for (auto& e : v) vec(e, m); } template <class T> vector<vector<T>> vvec(int n, int m) { vector<vector<T>> v; return vvec(v, n, m), v; } template <class... Ts> auto cols(int n) { return transpose(vec<tuple<Ts...>>(n)); } private: char buf[BufSize], *p = buf; void skip() { while (*p <= ' ') p++; } template <class T, size_t... Is> void read_tuple_impl(T& x, index_sequence<Is...>) { (*this)(get<Is>(x)...); } template <class T, size_t... Is> void vecs_impl(T& x, int n, index_sequence<Is...>) { (vec(get<Is>(x), n), ...); } template <class T, size_t... Is> static auto transpose_impl(const vector<T>& v, index_sequence<Is...>) { tuple<vector<decay_t<tuple_element_t<Is, T>>>...> w; (get<Is>(w).reserve(v.size()), ...); for (const auto& row : v) (get<Is>(w).push_back(get<Is>(row)), ...); return w; } template <class T> static auto transpose(const vector<T>& v) { return transpose_impl(v, make_index_sequence<tuple_size_v<T>>{}); }
};
template <size_t BufSize = 1 << 26> class stdout_writer {
public: ~stdout_writer() { flush(); } void flush() { fwrite(buf, 1, p - buf, stdout), p = buf; } void write_char(char c) { *p++ = c; } void write() {} void write(char c) { write_char(c); } template <class T> enable_if_t<is_integral_v<T>> write(T x) { if (!x) return write_char('0'); if constexpr (is_signed_v<T>) if (x < 0) write_char('-'), x = -x; static char tmp[16]; char* q = end(tmp); while (x >= 10000) memcpy(q -= 4, digits.data + x % 10000 * 4, 4), x /= 10000; if (x < 10) write_char('0' + x); else if (x < 100) write_char('0' + (uint8_t)x / 10), write_char('0' + (uint8_t)x % 10); else if (x < 1000) memcpy(p, digits.data + x * 4 + 1, 3), p += 3; else memcpy(p, digits.data + x * 4, 4), p += 4; memcpy(p, q, end(tmp) - q), p += end(tmp) - q; } template <class T> void_t<decltype(&T::val)> write(T x) { write(x.val()); } void write(double x) { static char tmp[40]; sprintf(tmp, "%.15f", x); write(tmp); } void write(long double x) { static char tmp[40]; sprintf(tmp, "%.15Lf", x); write(tmp); } void write(const char* s) { while (*s) *p++ = *s++; } void write(const string& s) { memcpy(p, s.c_str(), s.size()), p += s.size(); } template <class T, class U> void write(const pair<T, U>& x) { write(x.first), write_char(' '), write(x.second); } template <class... Ts> void write(const tuple<Ts...>& x) { write_tuple(x, make_index_sequence<sizeof...(Ts)>{}); } template <class... Ts> void write(const Ts&... xs) { ((write(xs), write_char(' ')), ...), --p; } template <class... Ts> void writeln(const Ts&... xs) { write(xs...), write_char('\n'); } template <class... Ts> void operator()(const Ts&... xs) { writeln(xs...); } template <class It> void iter(It first, It last, char sep = ' ') { if (first == last) write_char('\n'); else { while (first != last) write(*first++), write_char(sep); p[-1] = '\n'; } } template <class It> void iter1(It first, It last, char sep = ' ') { if (first == last) write_char('\n'); else { while (first != last) write(1 + *first++), write_char(sep); p[-1] = '\n'; } } template <class T> void vec(const vector<T>& v, char sep = ' ') { iter(all(v), sep); } template <class T> void vec1(const vector<T>& v, char sep = ' ') { iter1(all(v), sep); } void del() { *--p = 0; } void Yes(bool b = true) { writeln(b ? "Yes" : "No"); } void YES(bool b = true) { writeln(b ? "YES" : "NO"); } void Takahashi(bool b = true) { writeln(b ? "Takahashi" : "Aoki"); } private: char buf[BufSize], *p = buf; template <class T, size_t... Is> void write_tuple(const T& x, index_sequence<Is...>) { ((write(get<Is>(x)), write_char(' ')), ...), --p; } struct four_digits { char data[40000]; constexpr four_digits() : data() { for (int i = 0; i < 10000; i++) for (int n = i, j = 4; j--;) data[i * 4 + j] = n % 10 + '0', n /= 10; } } static constexpr digits{}; public:
#define INSTANT(s) void s() { writeln(#s); }
INSTANT(No) INSTANT(NO) INSTANT(Aoki) INSTANT(possible) INSTANT(Possible) INSTANT(POSSIBLE) INSTANT(impossible) INSTANT(Impossible) INSTANT(IMPOSSIBLE)
#undef INSTANT
};
stdin_reader<> in;
stdout_writer<> out;
#line 3 "lib/types.hpp"
template <class It>
using val_t = typename iterator_traits<It>::value_type;
#line 4 "lib/ps/fft.hpp"
#line 1 "lib/atcoder/internal_bit.hpp"
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
constexpr int bsf_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#line 1 "lib/mod/modint.hpp"
#line 6 "lib/mod/modint.hpp"
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#line 1 "lib/atcoder/internal_math.hpp"
#line 5 "lib/atcoder/internal_math.hpp"
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#line 1 "lib/atcoder/internal_type_traits.hpp"
#line 7 "lib/atcoder/internal_type_traits.hpp"
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#line 14 "lib/mod/modint.hpp"
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static constexpr mint raw(int v) {
mint x;
x._v = v;
return x;
}
constexpr static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
constexpr static_modint(T v) : _v() {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
constexpr static_modint(T v) : _v() {
_v = (unsigned int)(v % umod());
}
constexpr unsigned int val() const { return _v; }
constexpr mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
constexpr mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
constexpr mint operator++(int) {
mint result = *this;
++*this;
return result;
}
constexpr mint operator--(int) {
mint result = *this;
--*this;
return result;
}
constexpr mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
constexpr mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
constexpr mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
constexpr mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
constexpr mint operator+() const { return *this; }
constexpr mint operator-() const { return mint() - *this; }
constexpr mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
constexpr mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
constexpr friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
constexpr friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
constexpr friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
constexpr friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
constexpr friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
constexpr friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
constexpr friend bool operator<(const mint& lhs, const mint& rhs) {
return lhs._v < rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
friend bool operator<(const mint& lhs, const mint& rhs) {
return lhs._v < rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#line 3 "lib/bit/ctz.hpp"
#pragma GCC target("bmi")
template <class T>
int ctz(T x) {
if (!x) return sizeof(T) * 8;
if constexpr (sizeof(T) <= sizeof(unsigned)) {
return __builtin_ctz((unsigned)x);
} else if constexpr (sizeof(T) <= sizeof(unsigned long long)) {
return __builtin_ctzll((unsigned long long)x);
} else if constexpr (sizeof(T) <= sizeof(unsigned long long) * 2) {
unsigned long long y = x;
return y ? ctz(y)
: sizeof(y) * 8 + ctz((unsigned long long)(x >> sizeof(y) * 8));
}
}
#line 8 "lib/ps/fft.hpp"
#ifndef ATCODER_CONVOLUTION_HPP
#define ATCODER_CONVOLUTION_HPP
namespace atcoder {
namespace internal {
template <
class mint, int g = internal::primitive_root<mint::mod()>,
internal::is_static_modint_t<mint>* = nullptr>
struct fft_info {
static constexpr int rank2 = bsf_constexpr(mint::mod() - 1);
mint root[rank2 + 1]; // root[i]^(2^i) == 1
mint iroot[rank2 + 1]; // root[i] * iroot[i] == 1
mint rate2[std::max(0, rank2 - 2 + 1)];
mint irate2[std::max(0, rank2 - 2 + 1)];
mint rate3[std::max(0, rank2 - 3 + 1)];
mint irate3[std::max(0, rank2 - 3 + 1)];
constexpr fft_info() : root(), iroot(), rate2(), irate2(), rate3(), irate3() {
root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
iroot[rank2] = root[rank2].inv();
for (int i = rank2 - 1; i >= 0; i--) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
}
};
template <class It, internal::is_static_modint_t<val_t<It>>* = nullptr>
void butterfly(It a, It last) {
using mint = val_t<It>;
int n = last - a;
int h = internal::ceil_pow2(n);
static constexpr fft_info<mint> info;
int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
for (int s = 0; s < (1 << len); s++) {
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
if (s + 1 != (1 << len)) rot *= info.rate2[bsf(~(unsigned int)(s))];
}
len++;
} else {
// 4-base
int p = 1 << (h - len - 2);
mint rot = 1, imag = info.root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto mod2 = 1ULL * mint::mod() * mint::mod();
auto a0 = 1ULL * a[i + offset].val();
auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val() * imag.val();
auto na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
if (s + 1 != (1 << len)) rot *= info.rate3[bsf(~(unsigned int)(s))];
}
len += 2;
}
}
}
template <class mint>
void butterfly(std::vector<mint>& a) {
butterfly(a.begin(), a.end());
}
template <class It, internal::is_static_modint_t<val_t<It>>* = nullptr>
void butterfly_inv(It a, It last) {
using mint = val_t<It>;
int n = last - a;
int h = internal::ceil_pow2(n);
static constexpr fft_info<mint> info;
int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
for (int s = 0; s < (1 << (len - 1)); s++) {
int offset = s << (h - len + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - r.val()) *
irot.val();
;
}
if (s + 1 != (1 << (len - 1)))
irot *= info.irate2[bsf(~(unsigned int)(s))];
}
len--;
} else {
// 4-base
int p = 1 << (h - len);
mint irot = 1, iimag = info.iroot[2];
for (int s = 0; s < (1 << (len - 2)); s++) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
auto a0 = 1ULL * a[i + offset + 0 * p].val();
auto a1 = 1ULL * a[i + offset + 1 * p].val();
auto a2 = 1ULL * a[i + offset + 2 * p].val();
auto a3 = 1ULL * a[i + offset + 3 * p].val();
auto a2na3iimag =
1ULL * mint((mint::mod() + a2 - a3) * iimag.val()).val();
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] =
(a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
a[i + offset + 2 * p] =
(a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) * irot2.val();
a[i + offset + 3 * p] =
(a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *
irot3.val();
}
if (s + 1 != (1 << (len - 2)))
irot *= info.irate3[bsf(~(unsigned int)(s))];
}
len -= 2;
}
}
}
template <class mint>
void butterfly_inv(vector<mint>& a) {
butterfly_inv(a.begin(), a.end());
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_naive(
const std::vector<mint>& a, const std::vector<mint>& b) {
int n = int(a.size()), m = int(b.size());
std::vector<mint> ans(n + m - 1);
if (n < m) {
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) { ans[i + j] += a[i] * b[j]; }
}
} else {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; }
}
}
return ans;
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
int z = 1 << internal::ceil_pow2(n + m - 1);
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) { a[i] *= b[i]; }
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (std::min(n, m) <= 60) return convolution_naive(a, b);
return internal::convolution_fft(a, b);
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(
const std::vector<mint>& a, const std::vector<mint>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (std::min(n, m) <= 60) return convolution_naive(a, b);
return internal::convolution_fft(a, b);
}
template <
unsigned int mod = 998244353, class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = static_modint<mod>;
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) { a2[i] = mint(a[i]); }
for (int i = 0; i < m; i++) { b2[i] = mint(b[i]); }
auto c2 = convolution(move(a2), move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); }
return c;
}
std::vector<long long> convolution_ll(
const std::vector<long long>& a, const std::vector<long long>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 =
internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 =
internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 =
internal::inv_gcd(MOD1 * MOD2, MOD3).second;
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
// B = 2^63, -B <= x, r(real value) < B
// (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
// r = c1[i] (mod MOD1)
// focus on MOD1
// r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
// r = x,
// x - M' + (0 or 2B),
// x - 2M' + (0, 2B or 4B),
// x - 3M' + (0, 2B, 4B or 6B) (without mod!)
// (r - x) = 0, (0)
// - M' + (0 or 2B), (1)
// -2M' + (0 or 2B or 4B), (2)
// -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
// we checked that
// ((1) mod MOD1) mod 5 = 2
// ((2) mod MOD1) mod 5 = 3
// ((3) mod MOD1) mod 5 = 4
long long diff =
c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {
0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
#endif // ATCODER_CONVOLUTION_HPP
template <class It>
void fft(It a, It last) {
atcoder::internal::butterfly(a, last);
}
template <class T>
void fft(vector<T>& a, int n = -1) {
if (n != -1) a.resize(n);
fft(all(a));
}
template <class It>
void ifft(It a, It last) {
atcoder::internal::butterfly_inv(a, last);
}
template <class T>
void ifft(vector<T>& a) {
ifft(all(a));
}
template <class T>
void double_fft(vector<T>& a) {
static constexpr atcoder::internal::fft_info<T> info{};
int m = a.size();
a.resize(m * 2), copy(a.begin(), a.begin() + m, a.begin() + m);
ifft(a.begin() + m, a.end());
T z = T(m).inv();
T w = info.root[ctz(m * 2)];
rep2(i, m, m * 2) a[i] *= z, z *= w;
fft(a.begin() + m, a.end());
}
#line 3 "lib/util/seed.hpp"
auto seed() {
#if defined(LOCAL) || defined(FIX_SEED)
return 314169265258979;
#endif
return chrono::steady_clock::now().time_since_epoch().count();
}
#line 3 "lib/str/rolling_hash.hpp"
class rolling_hash {
public:
uint64_t r;
static constexpr uint64_t MOD = (uint64_t(1) << 61) - 1;
template <class It>
rolling_hash(It first, It last, uint64_t r)
: r(r), prefix(last - first + 1), power(last - first + 1) {
prefix[0] = 0;
power[0] = 1;
rep(i, last - first) {
prefix[i + 1] = reduce(mul(prefix[i], r) + uint64_t(first[i]));
power[i + 1] = mul(power[i], r);
}
}
template <class It>
rolling_hash(It first, It last) : rolling_hash(first, last, seed()) {}
uint64_t operator()(int l, int r) const {
uint64_t t = prefix[r] + MOD - mul(power[r - l], prefix[l]);
return reduce(t);
}
template <class It>
uint64_t operator()(It first, It last) const {
uint64_t t = 0;
for (auto it = first; it != last; it++) t = reduce(mul(t, r) + *it);
return t;
}
private:
vector<uint64_t> prefix, power;
static uint64_t mul(uint64_t a, uint64_t b) {
__uint128_t t = __uint128_t(a) * b;
return reduce((t >> 61) + (t & MOD));
}
// [0, 2 * MOD) -> [0, MOD)
static uint64_t reduce(uint64_t a) { return a >= MOD ? a - MOD : a; }
};
#line 4 "main.cpp"
using mint = atcoder::modint998244353;
#line 4 "lib/iter/cumsum.hpp"
template <class It, class T = val_t<It>, class F = plus<T>>
vector<T> cumsuml(It first, It last, T e = T(), const F& f = F()) {
vector<T> res{e};
res.reserve(last - first + 1);
while (first != last) res.push_back(e = f(e, *first++));
return res;
}
template <class It, class T = val_t<It>, class F = plus<T>>
vector<T> cumsumr(It first, It last, T e = T(), const F& f = F()) {
vector<T> res{e};
res.reserve(last - first + 1);
while (first != last) res.push_back(e = f(e, *--last));
reverse(res.begin(), res.end());
return res;
}
#line 6 "main.cpp"
int main() {
int n = in, m = in, k = in;
string s = in, t = in;
auto b = seed();
string ss = s, tt = t;
rep(i, n) ss[i] |= 1 << 5;
rep(i, m) tt[i] |= 1 << 5;
rolling_hash s_hash(all(ss), b);
rolling_hash t_hasher(all(tt), b);
auto t_hash = t_hasher(0, m);
vector<mint> sCap(n), scap(n), tCap(m), tcap(m);
rep(i, n) sCap[i] = s[i] >> 5 & 1, scap[i] = ~s[i] >> 5 & 1;
rep(i, m) tCap[i] = t[m - 1 - i] >> 5 & 1, tcap[i] = ~t[m - 1 - i] >> 5 & 1;
auto Cc = atcoder::convolution(sCap, tcap);
auto cC = atcoder::convolution(scap, tCap);
int ans = 0;
rep(i, n - m + 1) {
if (s_hash(i, i+m) != t_hash) continue;
auto diff = (Cc[i+m-1] + cC[i+m-1]).val();
ans += 0 < diff && diff <= k;
}
out(ans);
}
shino16