結果
問題 | No.2626 Similar But Different Name |
ユーザー | manjuuu_onsen |
提出日時 | 2024-02-09 23:18:22 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 31,355 bytes |
コンパイル時間 | 3,500 ms |
コンパイル使用メモリ | 213,680 KB |
実行使用メモリ | 47,672 KB |
最終ジャッジ日時 | 2024-09-28 16:31:25 |
合計ジャッジ時間 | 33,371 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | WA * 3 |
other | WA * 35 |
ソースコード
#include<bits/stdc++.h>using namespace std;using ll = long long;using P = pair<int,int>;#include <algorithm>#include <cassert>#include <numeric>#include <string>#include <vector>namespace atcoder {namespace internal {std::vector<int> sa_naive(const std::vector<int>& s) {int n = int(s.size());std::vector<int> sa(n);std::iota(sa.begin(), sa.end(), 0);std::sort(sa.begin(), sa.end(), [&](int l, int r) {if (l == r) return false;while (l < n && r < n) {if (s[l] != s[r]) return s[l] < s[r];l++;r++;}return l == n;});return sa;}std::vector<int> sa_doubling(const std::vector<int>& s) {int n = int(s.size());std::vector<int> sa(n), rnk = s, tmp(n);std::iota(sa.begin(), sa.end(), 0);for (int k = 1; k < n; k *= 2) {auto cmp = [&](int x, int y) {if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];int rx = x + k < n ? rnk[x + k] : -1;int ry = y + k < n ? rnk[y + k] : -1;return rx < ry;};std::sort(sa.begin(), sa.end(), cmp);tmp[sa[0]] = 0;for (int i = 1; i < n; i++) {tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);}std::swap(tmp, rnk);}return sa;}// SA-IS, linear-time suffix array construction// Reference:// G. Nong, S. Zhang, and W. H. Chan,// Two Efficient Algorithms for Linear Time Suffix Array Constructiontemplate <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>std::vector<int> sa_is(const std::vector<int>& s, int upper) {int n = int(s.size());if (n == 0) return {};if (n == 1) return {0};if (n == 2) {if (s[0] < s[1]) {return {0, 1};} else {return {1, 0};}}if (n < THRESHOLD_NAIVE) {return sa_naive(s);}if (n < THRESHOLD_DOUBLING) {return sa_doubling(s);}std::vector<int> sa(n);std::vector<bool> ls(n);for (int i = n - 2; i >= 0; i--) {ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);}std::vector<int> sum_l(upper + 1), sum_s(upper + 1);for (int i = 0; i < n; i++) {if (!ls[i]) {sum_s[s[i]]++;} else {sum_l[s[i] + 1]++;}}for (int i = 0; i <= upper; i++) {sum_s[i] += sum_l[i];if (i < upper) sum_l[i + 1] += sum_s[i];}auto induce = [&](const std::vector<int>& lms) {std::fill(sa.begin(), sa.end(), -1);std::vector<int> buf(upper + 1);std::copy(sum_s.begin(), sum_s.end(), buf.begin());for (auto d : lms) {if (d == n) continue;sa[buf[s[d]]++] = d;}std::copy(sum_l.begin(), sum_l.end(), buf.begin());sa[buf[s[n - 1]]++] = n - 1;for (int i = 0; i < n; i++) {int v = sa[i];if (v >= 1 && !ls[v - 1]) {sa[buf[s[v - 1]]++] = v - 1;}}std::copy(sum_l.begin(), sum_l.end(), buf.begin());for (int i = n - 1; i >= 0; i--) {int v = sa[i];if (v >= 1 && ls[v - 1]) {sa[--buf[s[v - 1] + 1]] = v - 1;}}};std::vector<int> lms_map(n + 1, -1);int m = 0;for (int i = 1; i < n; i++) {if (!ls[i - 1] && ls[i]) {lms_map[i] = m++;}}std::vector<int> lms;lms.reserve(m);for (int i = 1; i < n; i++) {if (!ls[i - 1] && ls[i]) {lms.push_back(i);}}induce(lms);if (m) {std::vector<int> sorted_lms;sorted_lms.reserve(m);for (int v : sa) {if (lms_map[v] != -1) sorted_lms.push_back(v);}std::vector<int> rec_s(m);int rec_upper = 0;rec_s[lms_map[sorted_lms[0]]] = 0;for (int i = 1; i < m; i++) {int l = sorted_lms[i - 1], r = sorted_lms[i];int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;bool same = true;if (end_l - l != end_r - r) {same = false;} else {while (l < end_l) {if (s[l] != s[r]) {break;}l++;r++;}if (l == n || s[l] != s[r]) same = false;}if (!same) rec_upper++;rec_s[lms_map[sorted_lms[i]]] = rec_upper;}auto rec_sa =sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);for (int i = 0; i < m; i++) {sorted_lms[i] = lms[rec_sa[i]];}induce(sorted_lms);}return sa;}} // namespace internalstd::vector<int> suffix_array(const std::vector<int>& s, int upper) {assert(0 <= upper);for (int d : s) {assert(0 <= d && d <= upper);}auto sa = internal::sa_is(s, upper);return sa;}template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {int n = int(s.size());std::vector<int> idx(n);iota(idx.begin(), idx.end(), 0);sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });std::vector<int> s2(n);int now = 0;for (int i = 0; i < n; i++) {if (i && s[idx[i - 1]] != s[idx[i]]) now++;s2[idx[i]] = now;}return internal::sa_is(s2, now);}std::vector<int> suffix_array(const std::string& s) {int n = int(s.size());std::vector<int> s2(n);for (int i = 0; i < n; i++) {s2[i] = s[i];}return internal::sa_is(s2, 255);}// Reference:// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its// Applicationstemplate <class T>std::vector<int> lcp_array(const std::vector<T>& s,const std::vector<int>& sa) {int n = int(s.size());assert(n >= 1);std::vector<int> rnk(n);for (int i = 0; i < n; i++) {rnk[sa[i]] = i;}std::vector<int> lcp(n - 1);int h = 0;for (int i = 0; i < n; i++) {if (h > 0) h--;if (rnk[i] == 0) continue;int j = sa[rnk[i] - 1];for (; j + h < n && i + h < n; h++) {if (s[j + h] != s[i + h]) break;}lcp[rnk[i] - 1] = h;}return lcp;}std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {int n = int(s.size());std::vector<int> s2(n);for (int i = 0; i < n; i++) {s2[i] = s[i];}return lcp_array(s2, sa);}// Reference:// D. Gusfield,// Algorithms on Strings, Trees, and Sequences: Computer Science and// Computational Biologytemplate <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {int n = int(s.size());if (n == 0) return {};std::vector<int> z(n);z[0] = 0;for (int i = 1, j = 0; i < n; i++) {int& k = z[i];k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);while (i + k < n && s[k] == s[i + k]) k++;if (j + z[j] < i + z[i]) j = i;}z[0] = n;return z;}std::vector<int> z_algorithm(const std::string& s) {int n = int(s.size());std::vector<int> s2(n);for (int i = 0; i < n; i++) {s2[i] = s[i];}return z_algorithm(s2);}} // namespace atcoder#include <algorithm>#include <array>#ifdef _MSC_VER#include <intrin.h>#endifnamespace atcoder {namespace internal {// @param n `0 <= n`// @return minimum non-negative `x` s.t. `n <= 2**x`int ceil_pow2(int n) {int x = 0;while ((1U << x) < (unsigned int)(n)) x++;return x;}// @param n `1 <= n`// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`int bsf(unsigned int n) {#ifdef _MSC_VERunsigned long index;_BitScanForward(&index, n);return index;#elsereturn __builtin_ctz(n);#endif}} // namespace internal} // namespace atcoder#include <utility>namespace atcoder {namespace internal {// @param m `1 <= m`// @return x mod mconstexpr long long safe_mod(long long x, long long m) {x %= m;if (x < 0) x += m;return x;}// Fast moduler by barrett reduction// Reference: https://en.wikipedia.org/wiki/Barrett_reduction// NOTE: reconsider after Ice Lakestruct barrett {unsigned int _m;unsigned long long im;// @param m `1 <= m`barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}// @return munsigned int umod() const { return _m; }// @param a `0 <= a < m`// @param b `0 <= b < m`// @return `a * b % m`unsigned int mul(unsigned int a, unsigned int b) const {// [1] m = 1// a = b = im = 0, so okay// [2] m >= 2// im = ceil(2^64 / m)// -> im * m = 2^64 + r (0 <= r < m)// let z = a*b = c*m + d (0 <= c, d < m)// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2// ((ab * im) >> 64) == c or c + 1unsigned long long z = a;z *= b;#ifdef _MSC_VERunsigned long long x;_umul128(z, im, &x);#elseunsigned long long x =(unsigned long long)(((unsigned __int128)(z)*im) >> 64);#endifunsigned int v = (unsigned int)(z - x * _m);if (_m <= v) v += _m;return v;}};// @param n `0 <= n`// @param m `1 <= m`// @return `(x ** n) % m`constexpr long long pow_mod_constexpr(long long x, long long n, int m) {if (m == 1) return 0;unsigned int _m = (unsigned int)(m);unsigned long long r = 1;unsigned long long y = safe_mod(x, m);while (n) {if (n & 1) r = (r * y) % _m;y = (y * y) % _m;n >>= 1;}return r;}// Reference:// M. Forisek and J. Jancina,// Fast Primality Testing for Integers That Fit into a Machine Word// @param n `0 <= n`constexpr bool is_prime_constexpr(int n) {if (n <= 1) return false;if (n == 2 || n == 7 || n == 61) return true;if (n % 2 == 0) return false;long long d = n - 1;while (d % 2 == 0) d /= 2;for (long long a : {2, 7, 61}) {long long t = d;long long y = pow_mod_constexpr(a, t, n);while (t != n - 1 && y != 1 && y != n - 1) {y = y * y % n;t <<= 1;}if (y != n - 1 && t % 2 == 0) {return false;}}return true;}template <int n> constexpr bool is_prime = is_prime_constexpr(n);// @param b `1 <= b`// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/gconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {a = safe_mod(a, b);if (a == 0) return {b, 0};// Contracts:// [1] s - m0 * a = 0 (mod b)// [2] t - m1 * a = 0 (mod b)// [3] s * |m1| + t * |m0| <= blong long s = b, t = a;long long m0 = 0, m1 = 1;while (t) {long long u = s / t;s -= t * u;m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b// [3]:// (s - t * u) * |m1| + t * |m0 - m1 * u|// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)// = s * |m1| + t * |m0| <= bauto tmp = s;s = t;t = tmp;tmp = m0;m0 = m1;m1 = tmp;}// by [3]: |m0| <= b/g// by g != b: |m0| < b/gif (m0 < 0) m0 += b / s;return {s, m0};}// Compile time primitive root// @param m must be prime// @return primitive root (and minimum in now)constexpr int primitive_root_constexpr(int m) {if (m == 2) return 1;if (m == 167772161) return 3;if (m == 469762049) return 3;if (m == 754974721) return 11;if (m == 998244353) return 3;int divs[20] = {};divs[0] = 2;int cnt = 1;int x = (m - 1) / 2;while (x % 2 == 0) x /= 2;for (int i = 3; (long long)(i)*i <= x; i += 2) {if (x % i == 0) {divs[cnt++] = i;while (x % i == 0) {x /= i;}}}if (x > 1) {divs[cnt++] = x;}for (int g = 2;; g++) {bool ok = true;for (int i = 0; i < cnt; i++) {if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {ok = false;break;}}if (ok) return g;}}template <int m> constexpr int primitive_root = primitive_root_constexpr(m);} // namespace internal} // namespace atcoder#include <cassert>#include <numeric>#include <type_traits>namespace atcoder {namespace internal {#ifndef _MSC_VERtemplate <class T>using is_signed_int128 =typename std::conditional<std::is_same<T, __int128_t>::value ||std::is_same<T, __int128>::value,std::true_type,std::false_type>::type;template <class T>using is_unsigned_int128 =typename std::conditional<std::is_same<T, __uint128_t>::value ||std::is_same<T, unsigned __int128>::value,std::true_type,std::false_type>::type;template <class T>using make_unsigned_int128 =typename std::conditional<std::is_same<T, __int128_t>::value,__uint128_t,unsigned __int128>;template <class T>using is_integral = typename std::conditional<std::is_integral<T>::value ||is_signed_int128<T>::value ||is_unsigned_int128<T>::value,std::true_type,std::false_type>::type;template <class T>using is_signed_int = typename std::conditional<(is_integral<T>::value &&std::is_signed<T>::value) ||is_signed_int128<T>::value,std::true_type,std::false_type>::type;template <class T>using is_unsigned_int =typename std::conditional<(is_integral<T>::value &&std::is_unsigned<T>::value) ||is_unsigned_int128<T>::value,std::true_type,std::false_type>::type;template <class T>using to_unsigned = typename std::conditional<is_signed_int128<T>::value,make_unsigned_int128<T>,typename std::conditional<std::is_signed<T>::value,std::make_unsigned<T>,std::common_type<T>>::type>::type;#elsetemplate <class T> using is_integral = typename std::is_integral<T>;template <class T>using is_signed_int =typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,std::true_type,std::false_type>::type;template <class T>using is_unsigned_int =typename std::conditional<is_integral<T>::value &&std::is_unsigned<T>::value,std::true_type,std::false_type>::type;template <class T>using to_unsigned = typename std::conditional<is_signed_int<T>::value,std::make_unsigned<T>,std::common_type<T>>::type;#endiftemplate <class T>using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;template <class T>using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;template <class T> using to_unsigned_t = typename to_unsigned<T>::type;} // namespace internal} // namespace atcoder#include <cassert>#include <numeric>#include <type_traits>#ifdef _MSC_VER#include <intrin.h>#endifnamespace atcoder {namespace internal {struct modint_base {};struct static_modint_base : modint_base {};template <class T> using is_modint = std::is_base_of<modint_base, T>;template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;} // namespace internaltemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>struct static_modint : internal::static_modint_base {using mint = static_modint;public:static constexpr int mod() { return m; }static mint raw(int v) {mint x;x._v = v;return x;}static_modint() : _v(0) {}template <class T, internal::is_signed_int_t<T>* = nullptr>static_modint(T v) {long long x = (long long)(v % (long long)(umod()));if (x < 0) x += umod();_v = (unsigned int)(x);}template <class T, internal::is_unsigned_int_t<T>* = nullptr>static_modint(T v) {_v = (unsigned int)(v % umod());}static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }unsigned int val() const { return _v; }mint& operator++() {_v++;if (_v == umod()) _v = 0;return *this;}mint& operator--() {if (_v == 0) _v = umod();_v--;return *this;}mint operator++(int) {mint result = *this;++*this;return result;}mint operator--(int) {mint result = *this;--*this;return result;}mint& operator+=(const mint& rhs) {_v += rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator-=(const mint& rhs) {_v -= rhs._v;if (_v >= umod()) _v += umod();return *this;}mint& operator*=(const mint& rhs) {unsigned long long z = _v;z *= rhs._v;_v = (unsigned int)(z % umod());return *this;}mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }mint operator+() const { return *this; }mint operator-() const { return mint() - *this; }mint pow(long long n) const {assert(0 <= n);mint x = *this, r = 1;while (n) {if (n & 1) r *= x;x *= x;n >>= 1;}return r;}mint inv() const {if (prime) {assert(_v);return pow(umod() - 2);} else {auto eg = internal::inv_gcd(_v, m);assert(eg.first == 1);return eg.second;}}friend mint operator+(const mint& lhs, const mint& rhs) {return mint(lhs) += rhs;}friend mint operator-(const mint& lhs, const mint& rhs) {return mint(lhs) -= rhs;}friend mint operator*(const mint& lhs, const mint& rhs) {return mint(lhs) *= rhs;}friend mint operator/(const mint& lhs, const mint& rhs) {return mint(lhs) /= rhs;}friend bool operator==(const mint& lhs, const mint& rhs) {return lhs._v == rhs._v;}friend bool operator!=(const mint& lhs, const mint& rhs) {return lhs._v != rhs._v;}private:unsigned int _v;static constexpr unsigned int umod() { return m; }static constexpr bool prime = internal::is_prime<m>;};template <int id> struct dynamic_modint : internal::modint_base {using mint = dynamic_modint;public:static int mod() { return (int)(bt.umod()); }static void set_mod(int m) {assert(1 <= m);bt = internal::barrett(m);}static mint raw(int v) {mint x;x._v = v;return x;}dynamic_modint() : _v(0) {}template <class T, internal::is_signed_int_t<T>* = nullptr>dynamic_modint(T v) {long long x = (long long)(v % (long long)(mod()));if (x < 0) x += mod();_v = (unsigned int)(x);}template <class T, internal::is_unsigned_int_t<T>* = nullptr>dynamic_modint(T v) {_v = (unsigned int)(v % mod());}dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }unsigned int val() const { return _v; }mint& operator++() {_v++;if (_v == umod()) _v = 0;return *this;}mint& operator--() {if (_v == 0) _v = umod();_v--;return *this;}mint operator++(int) {mint result = *this;++*this;return result;}mint operator--(int) {mint result = *this;--*this;return result;}mint& operator+=(const mint& rhs) {_v += rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator-=(const mint& rhs) {_v += mod() - rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator*=(const mint& rhs) {_v = bt.mul(_v, rhs._v);return *this;}mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }mint operator+() const { return *this; }mint operator-() const { return mint() - *this; }mint pow(long long n) const {assert(0 <= n);mint x = *this, r = 1;while (n) {if (n & 1) r *= x;x *= x;n >>= 1;}return r;}mint inv() const {auto eg = internal::inv_gcd(_v, mod());assert(eg.first == 1);return eg.second;}friend mint operator+(const mint& lhs, const mint& rhs) {return mint(lhs) += rhs;}friend mint operator-(const mint& lhs, const mint& rhs) {return mint(lhs) -= rhs;}friend mint operator*(const mint& lhs, const mint& rhs) {return mint(lhs) *= rhs;}friend mint operator/(const mint& lhs, const mint& rhs) {return mint(lhs) /= rhs;}friend bool operator==(const mint& lhs, const mint& rhs) {return lhs._v == rhs._v;}friend bool operator!=(const mint& lhs, const mint& rhs) {return lhs._v != rhs._v;}private:unsigned int _v;static internal::barrett bt;static unsigned int umod() { return bt.umod(); }};template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;using modint998244353 = static_modint<998244353>;using modint1000000007 = static_modint<1000000007>;using modint = dynamic_modint<-1>;namespace internal {template <class T>using is_static_modint = std::is_base_of<internal::static_modint_base, T>;template <class T>using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;template <class> struct is_dynamic_modint : public std::false_type {};template <int id>struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};template <class T>using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;} // namespace internal} // namespace atcoder#include <cassert>#include <type_traits>#include <vector>namespace atcoder {namespace internal {template <class mint, internal::is_static_modint_t<mint>* = nullptr>void butterfly(std::vector<mint>& a) {static constexpr int g = internal::primitive_root<mint::mod()>;int n = int(a.size());int h = internal::ceil_pow2(n);static bool first = true;static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]if (first) {first = false;mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1int cnt2 = bsf(mint::mod() - 1);mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();for (int i = cnt2; i >= 2; i--) {// e^(2^i) == 1es[i - 2] = e;ies[i - 2] = ie;e *= e;ie *= ie;}mint now = 1;for (int i = 0; i < cnt2 - 2; i++) {sum_e[i] = es[i] * now;now *= ies[i];}}for (int ph = 1; ph <= h; ph++) {int w = 1 << (ph - 1), p = 1 << (h - ph);mint now = 1;for (int s = 0; s < w; s++) {int offset = s << (h - ph + 1);for (int i = 0; i < p; i++) {auto l = a[i + offset];auto r = a[i + offset + p] * now;a[i + offset] = l + r;a[i + offset + p] = l - r;}now *= sum_e[bsf(~(unsigned int)(s))];}}}template <class mint, internal::is_static_modint_t<mint>* = nullptr>void butterfly_inv(std::vector<mint>& a) {static constexpr int g = internal::primitive_root<mint::mod()>;int n = int(a.size());int h = internal::ceil_pow2(n);static bool first = true;static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]if (first) {first = false;mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1int cnt2 = bsf(mint::mod() - 1);mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();for (int i = cnt2; i >= 2; i--) {// e^(2^i) == 1es[i - 2] = e;ies[i - 2] = ie;e *= e;ie *= ie;}mint now = 1;for (int i = 0; i < cnt2 - 2; i++) {sum_ie[i] = ies[i] * now;now *= es[i];}}for (int ph = h; ph >= 1; ph--) {int w = 1 << (ph - 1), p = 1 << (h - ph);mint inow = 1;for (int s = 0; s < w; s++) {int offset = s << (h - ph + 1);for (int i = 0; i < p; i++) {auto l = a[i + offset];auto r = a[i + offset + p];a[i + offset] = l + r;a[i + offset + p] =(unsigned long long)(mint::mod() + l.val() - r.val()) *inow.val();}inow *= sum_ie[bsf(~(unsigned int)(s))];}}}} // namespace internaltemplate <class mint, internal::is_static_modint_t<mint>* = nullptr>std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {int n = int(a.size()), m = int(b.size());if (!n || !m) return {};if (std::min(n, m) <= 60) {if (n < m) {std::swap(n, m);std::swap(a, b);}std::vector<mint> ans(n + m - 1);for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) {ans[i + j] += a[i] * b[j];}}return ans;}int z = 1 << internal::ceil_pow2(n + m - 1);a.resize(z);internal::butterfly(a);b.resize(z);internal::butterfly(b);for (int i = 0; i < z; i++) {a[i] *= b[i];}internal::butterfly_inv(a);a.resize(n + m - 1);mint iz = mint(z).inv();for (int i = 0; i < n + m - 1; i++) a[i] *= iz;return a;}template <unsigned int mod = 998244353,class T,std::enable_if_t<internal::is_integral<T>::value>* = nullptr>std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {int n = int(a.size()), m = int(b.size());if (!n || !m) return {};using mint = static_modint<mod>;std::vector<mint> a2(n), b2(m);for (int i = 0; i < n; i++) {a2[i] = mint(a[i]);}for (int i = 0; i < m; i++) {b2[i] = mint(b[i]);}auto c2 = convolution(move(a2), move(b2));std::vector<T> c(n + m - 1);for (int i = 0; i < n + m - 1; i++) {c[i] = c2[i].val();}return c;}std::vector<long long> convolution_ll(const std::vector<long long>& a,const std::vector<long long>& b) {int n = int(a.size()), m = int(b.size());if (!n || !m) return {};static constexpr unsigned long long MOD1 = 754974721; // 2^24static constexpr unsigned long long MOD2 = 167772161; // 2^25static constexpr unsigned long long MOD3 = 469762049; // 2^26static constexpr unsigned long long M2M3 = MOD2 * MOD3;static constexpr unsigned long long M1M3 = MOD1 * MOD3;static constexpr unsigned long long M1M2 = MOD1 * MOD2;static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;static constexpr unsigned long long i1 =internal::inv_gcd(MOD2 * MOD3, MOD1).second;static constexpr unsigned long long i2 =internal::inv_gcd(MOD1 * MOD3, MOD2).second;static constexpr unsigned long long i3 =internal::inv_gcd(MOD1 * MOD2, MOD3).second;auto c1 = convolution<MOD1>(a, b);auto c2 = convolution<MOD2>(a, b);auto c3 = convolution<MOD3>(a, b);std::vector<long long> c(n + m - 1);for (int i = 0; i < n + m - 1; i++) {unsigned long long x = 0;x += (c1[i] * i1) % MOD1 * M2M3;x += (c2[i] * i2) % MOD2 * M1M3;x += (c3[i] * i3) % MOD3 * M1M2;// B = 2^63, -B <= x, r(real value) < B// (x, x - M, x - 2M, or x - 3M) = r (mod 2B)// r = c1[i] (mod MOD1)// focus on MOD1// r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)// r = x,// x - M' + (0 or 2B),// x - 2M' + (0, 2B or 4B),// x - 3M' + (0, 2B, 4B or 6B) (without mod!)// (r - x) = 0, (0)// - M' + (0 or 2B), (1)// -2M' + (0 or 2B or 4B), (2)// -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)// we checked that// ((1) mod MOD1) mod 5 = 2// ((2) mod MOD1) mod 5 = 3// ((3) mod MOD1) mod 5 = 4long long diff =c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));if (diff < 0) diff += MOD1;static constexpr unsigned long long offset[5] = {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};x -= offset[diff % 5];c[i] = x;}return c;}} // namespace atcoderusing namespace atcoder;// #include"debug.hpp"int main(){int n,m,k;cin>>n>>m>>k;string s,t;cin>>s>>t;vector<int> nm1(n-m+1),nm2(n-m+1);{vector<ll> sb(n),tb(m);for(int i=0; i<n; i++) sb[i] = (isupper(s[i]) != 0);for(int i=0; i<m; i++) tb[i] = (isupper(t[i]) != 0);reverse(tb.begin(), tb.end());auto ub = convolution_ll(sb,tb);for(int i=m-1; i<n; i++) cout << i << " : " << ub[i] << endl;for(int i=m-1; i<n; i++) nm1[i-(m-1)] = ub[i];}{vector<ll> sb(n),tb(m);for(int i=0; i<n; i++) sb[i] = (islower(s[i]) != 0);for(int i=0; i<m; i++) tb[i] = (islower(t[i]) != 0);reverse(tb.begin(), tb.end());auto ub = convolution_ll(sb,tb);for(int i=m-1; i<n; i++) cout << i << " : " << ub[i] << endl;for(int i=m-1; i<n; i++) nm2[i-(m-1)] = ub[i];}for(int i=0; i<n; i++) if(isupper(s[i])) s[i] = 'a' + (s[i] - 'A');for(int i=0; i<m; i++) if(isupper(t[i])) t[i] = 'a' + (t[i] - 'A');t += s;// print(nm);auto c = z_algorithm(t);int ans = 0;// print(c);for(int i=m; i<n+m; i++) {if(c[i] >= m) {int diff = m - nm1[i-m] - nm2[i-m];// print(i-m,diff);if(1 <= diff && diff <= k) ans++;}}cout << ans << endl;}