結果
問題 | No.2633 Subsequence Combination Score |
ユーザー | noya2 |
提出日時 | 2024-02-12 00:17:46 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 29,380 bytes |
コンパイル時間 | 3,324 ms |
コンパイル使用メモリ | 266,016 KB |
実行使用メモリ | 9,260 KB |
最終ジャッジ日時 | 2024-09-28 19:39:26 |
合計ジャッジ時間 | 14,392 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 227 ms
9,120 KB |
testcase_01 | AC | 229 ms
9,248 KB |
testcase_02 | AC | 230 ms
9,252 KB |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | AC | 229 ms
9,128 KB |
testcase_31 | AC | 228 ms
9,124 KB |
testcase_32 | AC | 228 ms
9,252 KB |
testcase_33 | AC | 238 ms
9,076 KB |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
ソースコード
#line 2 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" using namespace std; #include<bits/stdc++.h> #line 1 "/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp" namespace noya2 { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p){ os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p){ is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v){ int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v){ for (auto &x : v) is >> x; return is; } void in() {} template <typename T, class... U> void in(T &t, U &...u){ cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &...u){ cout << t; if (sizeof...(u)) cout << sep; out(u...); } template<typename T> void out(const vector<vector<T>> &vv){ int s = (int)vv.size(); for (int i = 0; i < s; i++) out(vv[i]); } struct IoSetup { IoSetup(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetup_noya2; } // namespace noya2 #line 1 "/Users/noya2/Desktop/Noya2_library/template/const.hpp" namespace noya2{ const int iinf = 1'000'000'007; const long long linf = 2'000'000'000'000'000'000LL; const long long mod998 = 998244353; const long long mod107 = 1000000007; const long double pi = 3.14159265358979323; const vector<int> dx = {0,1,0,-1,1,1,-1,-1}; const vector<int> dy = {1,0,-1,0,1,-1,-1,1}; const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const string alp = "abcdefghijklmnopqrstuvwxyz"; const string NUM = "0123456789"; void yes(){ cout << "Yes\n"; } void no(){ cout << "No\n"; } void YES(){ cout << "YES\n"; } void NO(){ cout << "NO\n"; } void yn(bool t){ t ? yes() : no(); } void YN(bool t){ t ? YES() : NO(); } } // namespace noya2 #line 1 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" namespace noya2{ unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){ if (a == 0 || b == 0) return a + b; int n = __builtin_ctzll(a); a >>= n; int m = __builtin_ctzll(b); b >>= m; while (a != b) { int mm = __builtin_ctzll(a - b); bool f = a > b; unsigned long long c = f ? a : b; b = f ? b : a; a = (c - b) >> mm; } return a << min(n, m); } template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(abs(a),abs(b))); } long long sqrt_fast(long long n) { if (n <= 0) return 0; long long x = sqrt(n); while ((x + 1) * (x + 1) <= n) x++; while (x * x > n) x--; return x; } template<typename T> T floor_div(const T n, const T d) { assert(d != 0); return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0); } template<typename T> T ceil_div(const T n, const T d) { assert(d != 0); return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0); } template<typename T> void uniq(vector<T> &v){ sort(v.begin(),v.end()); v.erase(unique(v.begin(),v.end()),v.end()); } template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; } } // namespace noya2 #line 8 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" #define rep(i,n) for (int i = 0; i < (int)(n); i++) #define repp(i,m,n) for (int i = (m); i < (int)(n); i++) #define reb(i,n) for (int i = (int)(n-1); i >= 0; i--) #define all(v) (v).begin(),(v).end() using ll = long long; using ld = long double; using uint = unsigned int; using ull = unsigned long long; using pii = pair<int,int>; using pll = pair<ll,ll>; using pil = pair<int,ll>; using pli = pair<ll,int>; namespace noya2{ /* ~ (. _________ . /) */ } using namespace noya2; #line 2 "c.cpp" #line 2 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp" namespace noya2 { constexpr ll safe_mod(ll x, ll m) { x %= m; if (x < 0) x += m; return x; } constexpr ll pow_mod_constexpr(ll x, ll n, int m) { if (m == 1) return 0; uint _m = (uint)(m); ull r = 1; ull y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; ll d = n - 1; while (d % 2 == 0) d /= 2; constexpr ll bases[3] = {2, 7, 61}; for (ll a : bases) { ll t = d; ll y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime_flag = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (ll)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root_flag = primitive_root_constexpr(m); } // namespace noya2 #line 4 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" namespace noya2{ struct barrett { uint _m; ull im; explicit barrett(uint m) : _m(m), im((ull)(-1) / m + 1) {} uint umod() const { return _m; } uint mul(uint a, uint b) const { ull z = a; z *= b; ull x = ull((__uint128_t(z) * im) >> 64); uint v = (uint)(z - x * _m); if (_m <= v) v += _m; return v; } }; template <int m> struct static_modint { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } constexpr static_modint() : _v(0) {} template<signed_integral T> constexpr static_modint(T v){ ll x = (ll)(v % (ll)(umod())); if (x < 0) x += umod(); _v = (uint)(x); } template<unsigned_integral T> constexpr static_modint(T v){ _v = (uint)(v % umod()); } constexpr unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } constexpr mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } constexpr mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } constexpr mint& operator*=(const mint& rhs) { ull z = _v; z *= rhs._v; _v = (uint)(z % umod()); return *this; } constexpr mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } constexpr mint operator+() const { return *this; } constexpr mint operator-() const { return mint() - *this; } constexpr mint pow(ll n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } constexpr mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend constexpr mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend constexpr mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend constexpr mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend constexpr mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend constexpr bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend constexpr bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = is_prime_flag<m>; }; template <int id> struct dynamic_modint { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template<signed_integral T> dynamic_modint(T v){ ll x = (ll)(v % (ll)(mod())); if (x < 0) x += mod(); _v = (uint)(x); } template<unsigned_integral T> dynamic_modint(T v){ _v = (uint)(v % mod()); } uint val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = noya2::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } private: unsigned int _v; static barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> noya2::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; template<typename T> concept Modint = requires (T &a){ T::mod(); a.inv(); a.val(); a.pow(declval<int>()); }; } // namespace noya2 #line 4 "c.cpp" using mint = modint998244353; #line 2 "/Users/noya2/Desktop/Noya2_library/math/binomial.hpp" namespace noya2 { template<typename mint> struct binomial { binomial(int len = 300000){ extend(len); } static mint fact(int n){ if (n < 0) return 0; while (n >= (int)_fact.size()) extend(); return _fact[n]; } static mint ifact(int n){ if (n < 0) return 0; while (n >= (int)_fact.size()) extend(); return _ifact[n]; } static mint inv(int n){ return ifact(n) * fact(n-1); } static mint C(int n, int r){ if (!(0 <= r && r <= n)) return 0; return fact(n) * ifact(r) * ifact(n-r); } static mint P(int n, int r){ if (!(0 <= r && r <= n)) return 0; return fact(n) * ifact(n-r); } inline mint operator()(int n, int r) { return C(n, r); } template<class... Cnts> static mint M(const Cnts&... cnts){ return multinomial(0,1,cnts...); } private: static mint multinomial(const int& sum, const mint& div_prod){ if (sum < 0) return 0; return fact(sum) * div_prod; } template<class... Tail> static mint multinomial(const int& sum, const mint& div_prod, const int& n1, const Tail&... tail){ if (n1 < 0) return 0; return multinomial(sum+n1,div_prod*ifact(n1),tail...); } static vector<mint> _fact, _ifact; static void extend(int len = -1){ if (_fact.empty()){ _fact = _ifact = {1,1}; } int siz = _fact.size(); if (len == -1) len = siz * 2; len = min<int>(len, mint::mod()-1); if (len < siz) return ; _fact.resize(len+1), _ifact.resize(len+1); for (int i = siz; i <= len; i++) _fact[i] = _fact[i-1] * i; _ifact[len] = _fact[len].inv(); for (int i = len; i > siz; i--) _ifact[i-1] = _ifact[i] * i; } }; template<typename T> std::vector<T>binomial<T>::_fact = vector<T>(2,T(1)); template<typename T> std::vector<T>binomial<T>::_ifact = vector<T>(2,T(1)); } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/fps/fps_ntt.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/fps/formal_power_series.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/fps/formal_power_series.hpp" namespace noya2{ template<typename T> concept Field = requires (T a, T b){ a + b; a - b; a / b; a * b; T(0); T(1); }; template<class Info> concept Fps_Info = requires { typename Info::value_type; requires Field<typename Info::value_type>; {Info::multiply(declval<vector<typename Info::value_type>>(),declval<vector<typename Info::value_type>>())} -> convertible_to<vector<typename Info::value_type>>; {Info::inv(declval<vector<typename Info::value_type>>(),declval<int>())} -> convertible_to<vector<typename Info::value_type>>; {Info::integral(declval<vector<typename Info::value_type>>())} -> convertible_to<vector<typename Info::value_type>>; }; template<Fps_Info Info> struct FormalPowerSeries : vector<typename Info::value_type> { using T = typename Info::value_type; using vector<T>::vector; using vector<T>::operator=; using FPS = FormalPowerSeries; FormalPowerSeries (const vector<T> &init_ = {}){ (*this) = init_; } void shrink(){ while (!(*this).empty() && (*this).back() == T(0)) (*this).pop_back(); } FPS &operator+=(const T &r){ if ((*this).empty()) (*this).resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const T &r){ if ((*this).empty()) (*this).resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const T &r){ for (auto &x : *this) x *= r; return *this; } FPS &operator/=(const T &r){ (*this) *= T(1)/r; return *this; } FPS &operator<<=(const int &d){ (*this).insert((*this).begin(),d,T(0)); return *this; } FPS &operator>>=(const int &d){ if ((int)(*this).size() <= d) (*this).clear(); else (*this).erase((*this).begin(),(*this).begin()+d); return *this; } FPS &operator+=(const FPS &r){ if ((*this).size() < r.size()) (*this).resize(r.size()); for (int i = 0; i < (int)(r.size()); i++) (*this)[i] += r[i]; return *this; } FPS &operator-=(const FPS &r){ if ((*this).size() < r.size()) (*this).resize(r.size()); for (int i = 0; i < (int)(r.size()); i++) (*this)[i] -= r[i]; return *this; } FPS &operator*=(const FPS &r){ if ((*this).empty() || r.empty()){ (*this).clear(); return *this; } (*this) = Info::multiply(*this,r); return *this; } FPS operator+(const T &r) const { return FPS(*this) += r; } FPS operator-(const T &r) const { return FPS(*this) -= r; } FPS operator*(const T &r) const { return FPS(*this) *= r; } FPS operator/(const T &r) const { return FPS(*this) /= r; } FPS operator<<(const int &d) const { return FPS(*this) <<= d; } FPS operator>>(const int &d) const { return FPS(*this) >>= d; } FPS operator+(const FPS &r) const { return FPS(*this) += r; } FPS operator-(const FPS &r) const { return FPS(*this) -= r; } FPS operator*(const FPS &r) const { return FPS(*this) *= r; } FPS operator+() const { return *this; } FPS operator-() const { FPS res(*this); for (auto &x : res) x = -x; return res; } T eval(const T &x) const { T res = T(0), w = T(1); for (auto &e : *this) res += e * w, w *= x; return res; } static FPS dot(const FPS &lhs, const FPS &rhs){ FPS res(min(lhs.size(),rhs.size())); for (int i = 0; i < (int)res.size(); i++) res[i] = lhs[i] * rhs[i]; return res; } FPS pre(int siz) const { FPS ret((*this).begin(), (*this).begin() + min((int)this->size(), siz)); if ((int)ret.size() < siz) ret.resize(siz); return ret; } FPS rev() const { FPS ret(*this); reverse(ret.begin(), ret.end()); return ret; } FPS diff() const { const int n = (int)this->size(); FPS ret(max(0, n - 1)); T one(1), coeff(1); for (int i = 1; i < n; i++) { ret[i - 1] = (*this)[i] * coeff; coeff += one; } return ret; } FPS integral() const { FPS ret = Info::integral(*this); return ret; } FPS inv(int d = -1) const { FPS ret = Info::inv(*this,d); return ret; } FPS exp(int d = -1) const { const int n = (*this).size(); if (d == -1) d = n; FPS f = {T(1)+(*this)[0],(*this)[1]}, res = {1,(n > 1 ? (*this)[1] : 0)}; for (int sz = 2; sz < d; sz <<= 1){ f.insert(f.end(),(*this).begin()+min(n,sz),(*this).begin()+min(n,sz*2)); if ((int)f.size() < sz*2) f.resize(sz*2); res = res * (f - res.log(2*sz)); res.resize(sz*2); } res.resize(d); return res; } FPS log(int d = -1) const { assert(!(*this).empty() && (*this)[0] == T(1)); if (d == -1) d = (*this).size(); return (this->diff() * this->inv(d)).pre(d - 1).integral(); } }; } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/fps/ntt.hpp" #line 5 "/Users/noya2/Desktop/Noya2_library/fps/ntt.hpp" namespace noya2{ template<Modint mint> struct NTT { static constexpr uint mod = mint::mod(); static constexpr ull mod2 = (ull)mod * mod; static constexpr uint pr = primitive_root_constexpr(mod); static constexpr int level = countr_zero(mod-1); mint wp[level+1], wm[level+1]; void set_ws(){ mint r = mint(pr).pow((mod-1) >> level); wp[level] = r, wm[level] = r.inv(); for (int i = level-1; i >= 0; i--){ wp[i] = wp[i+1] * wp[i+1]; wm[i] = wm[i+1] * wm[i+1]; } } NTT () { set_ws(); } void fft4(vector<mint> &a, int k, int s = 0){ uint im = wm[2].val(); uint n = 1<<k; uint len = n; int l = k; while (len > 1){ if (l == 1){ for (int i = 0; i < (1<<(k-1)); i++){ int i0 = s + i*2, i1 = i0+1; a[i0] += a[i1]; a[i1] = a[i0] - a[i1] * 2; } len >>= 1; l -= 1; } else { int len4 = len/4; int nlen = n/len; ull r1 = 1, r2 = 1, r3 = 1, imr1 = im, imr3 = im; for (int i = 0; i < len4; i++){ int offset = 0; for (int j = 0; j < nlen; j++){ int i0 = s + i + offset, i1 = i0 + len4, i2 = i1 + len4, i3 = i2 + len4; uint a0 = a[i0].val(); uint a1 = a[i1].val(); uint a2 = a[i2].val(); uint a3 = a[i3].val(); uint a0p2 = a0 + a2; uint a1p3 = a1 + a3; ull b0m2 = (a0 + mod - a2) * r1; ull b1m3 = (a1 + mod - a3) * imr1; ull c0m2 = (a0 + mod - a2) * r3; ull c1m3 = (a1 + mod - a3) * imr3; a[i0] = a0p2 + a1p3; a[i1] = b0m2 + b1m3; a[i2] = (a0p2 + mod*2 - a1p3) * r2; a[i3] = c0m2 + mod2*2 - c1m3; offset += len; } r1 = r1 * wm[l].val() % mod; r2 = r1 * r1 % mod; r3 = r1 * r2 % mod; imr1 = im * r1 % mod; imr3 = im * r3 % mod; } len >>= 2; l -= 2; } } } void ifft4(vector<mint> &a, int k, int s = 0){ uint im = wp[2].val(); uint n = 1<<k; uint len = (k & 1 ? 2 : 4); int l = (k & 1 ? 1 : 2); while (len <= n){ if (l == 1){ for (int i = 0; i < (1<<(k-1)); i++){ int i0 = s + i*2, i1 = i0+1; a[i0] += a[i1]; a[i1] = a[i0] - a[i1] * 2; } len <<= 2; l += 2; } else { int len4 = len/4; int nlen = n/len; ull r1 = 1, r2 = 1, r3 = 1, imr1 = im, imr3 = im; for (int i = 0; i < len4; i++){ int offset = 0; for (int j = 0; j < nlen; j++){ int i0 = s + i + offset, i1 = i0 + len4, i2 = i1 + len4, i3 = i2 + len4; ull a0 = a[i0].val(); ull a1 = a[i1].val() * r1; ull a2 = a[i2].val() * r2; ull a3 = a[i3].val() * r3; ull b1 = a[i1].val() * imr1; ull b3 = a[i3].val() * imr3; ull a0p2 = a0 + a2; ull a1p3 = a1 + a3; ull a0m2 = a0 + mod2 - a2; ull b1m3 = b1 + mod2 - b3; a[i0] = a0p2 + a1p3; a[i1] = a0m2 + b1m3; a[i2] = a0p2 + mod2*2 - a1p3; a[i3] = a0m2 + mod2*2 - b1m3; offset += len; } r1 = r1 * wp[l].val() % mod; r2 = r1 * r1 % mod; r3 = r1 * r2 % mod; imr1 = im * r1 % mod; imr3 = im * r3 % mod; } len <<= 2; l += 2; } } } void ntt(vector<mint> &a) { if ((int)a.size() <= 1) return; fft4(a, 63-countl_zero(a.size())); } void intt(vector<mint> &a, bool stop = false) { if ((int)a.size() <= 1) return; ifft4(a, 63-countl_zero(a.size())); if (stop) return ; mint iv = mint(a.size()).inv(); for (auto &x : a) x *= iv; } vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) { int l = a.size() + b.size() - 1; if (min<int>(a.size(), b.size()) <= 40){ vector<mint> s(l); for (int i = 0; i < (int)a.size(); i++) for (int j = 0; j < (int)b.size(); j++) s[i + j] += a[i] * b[j]; return s; } int k = 2, M = 4; while (M < l) M <<= 1, ++k; set_ws(); vector<mint> s(M); for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i]; fft4(s, k); if (a.size() == b.size() && a == b) { for (int i = 0; i < M; ++i) s[i] *= s[i]; } else { vector<mint> t(M); for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i]; fft4(t, k); for (int i = 0; i < M; ++i) s[i] *= t[i]; } ifft4(s, k); s.resize(l); mint invm = mint(M).inv(); for (int i = 0; i < l; ++i) s[i] *= invm; return s; } }; } // namespace noya2 #line 6 "/Users/noya2/Desktop/Noya2_library/fps/fps_ntt.hpp" namespace noya2{ template<typename T> struct fps_ntt{ using value_type = T; static NTT<T> ntt; static vector<T> multiply(const vector<T> &a, const vector<T> &b){ return ntt.multiply(a,b); } static vector<T> inv(const vector<T> &a, int d = -1){ const int n = a.size(); if (d == -1) d = n; vector<T> res = {a[0].inv()}; for (int siz = 1; siz < d; siz <<= 1){ vector<T> f(a.begin(),a.begin()+min(n,siz*2)), g(res); f.resize(siz*2), g.resize(siz*2); ntt.ntt(f), ntt.ntt(g); for (int i = 0; i < siz*2; i++) f[i] *= g[i]; ntt.intt(f,true); f.erase(f.begin(),f.begin()+siz); f.resize(siz*2); ntt.ntt(f); for (int i = 0; i < siz*2; i++) f[i] *= g[i]; ntt.intt(f,true); T siz2_inv = T(siz*2).inv(); siz2_inv *= -siz2_inv; for (int i = 0; i < siz; i++) f[i] *= siz2_inv; res.insert(res.end(),f.begin(),f.begin()+siz); } res.resize(d); return res; } static binomial<T> bnm; static vector<T> integral(const vector<T> &a){ const int n = a.size(); vector<T> res(n+1); for (int i = 1; i <= n; i++) res[i] = a[i-1] * bnm.inv(i); return res; } }; template<typename T> NTT<T> fps_ntt<T>::ntt; template<typename T> using FPS_ntt = FormalPowerSeries<fps_ntt<T>>; } // namespace noya2 #line 7 "c.cpp" using fps = FPS_ntt<mint>; void solve(){ int n; in(n); const int mx = 1<<17; vector<bool> exist(mx,false); rep(i,n){ int x; in(x); exist[x] = true; } exist[0] = true; binomial<mint> bnm; vector<mint> dp(mx); dp[0] = 1; auto dfs = [&](auto sfs, int l, int r) -> void { if (r - l <= 1) return ; int m = (l + r) / 2; sfs(sfs,l,m); fps f(m-l); repp(i,l,m){ if (exist[i]){ f[i-l] = dp[i]; } } fps e(r-l+1); rep(i,r-l+1){ e[i] = bnm.ifact(i); } f *= e; int sz = f.size(); repp(i,m-l,sz){ if (i+l < r) dp[i+l] += f[i]; } sfs(sfs,m,r); }; dfs(dfs,0,mx); mint ans = 0; rep(i,mx){ if (exist[i]){ ans += dp[i] * bnm.fact(i); } } out(ans-1); } int main(){ int t = 1; //in(t); while (t--) { solve(); } }