結果
問題 | No.2673 A present from B |
ユーザー | null |
提出日時 | 2024-02-12 20:30:17 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,516 bytes |
コンパイル時間 | 8,263 ms |
コンパイル使用メモリ | 543,280 KB |
実行使用メモリ | 31,012 KB |
最終ジャッジ日時 | 2024-09-29 23:23:27 |
合計ジャッジ時間 | 9,839 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | AC | 2 ms
5,248 KB |
testcase_23 | AC | 2 ms
5,248 KB |
testcase_24 | AC | 2 ms
5,248 KB |
testcase_25 | AC | 2 ms
5,248 KB |
testcase_26 | AC | 1 ms
5,248 KB |
ソースコード
/* このコード、と~おれ! Be accepted! ∧_∧ (。・ω・。)つ━☆・*。 ⊂ ノ ・゜+. しーJ °。+ *´¨) .· ´¸.·*´¨) ¸.·*¨) (¸.·´ (¸.·'* ☆ */ #include <cstdio> #include <algorithm> #include <string> #include <cmath> #include <cstring> #include <vector> #include <numeric> #include <iostream> #include <random> #include <map> #include <unordered_map> #include <queue> #include <regex> #include <functional> #include <complex> #include <list> #include <cassert> #include <iomanip> #include <set> #include <stack> #include <bitset> #include <array> #include <chrono> #include <unordered_set> //#pragma GCC target("arch=skylake-avx512") //#pragma GCC target("avx2") //#pragma GCC optimize("O3") #pragma GCC optimize("Ofast") //#pragma GCC target("sse4") #pragma GCC optimize("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #define repeat(i, n, m) for(int i = n; i < (m); ++i) #define rep(i, n) for(int i = 0; i < (n); ++i) #define printynl(a) printf(a ? "yes\n" : "no\n") #define printyn(a) printf(a ? "Yes\n" : "No\n") #define printYN(a) printf(a ? "YES\n" : "NO\n") #define printim(a) printf(a ? "possible\n" : "imposible\n") #define printdb(a) printf("%.50lf\n", a) #define printLdb(a) printf("%.50Lf\n", a) #define printdbd(a) printf("%.16lf\n", a) #define prints(s) printf("%s\n", s.c_str()) #define all(x) (x).begin(), (x).end() #define deg_to_rad(deg) (((deg)/360.0L)*2.0L*PI) #define rad_to_deg(rad) (((rad)/2.0L/PI)*360.0L) #define Please return #define AC 0 #define manhattan_dist(a, b, c, d) (abs(a - c) + abs(b - d)) using ll = long long; using ull = unsigned long long; constexpr int INF = 1073741823; constexpr int MINF = -1073741823; constexpr ll LINF = ll(4661686018427387903); constexpr ll MOD = 1e9 + 7; constexpr ll mod = 998244353; constexpr long double eps = 1e-14; const long double PI = acosl(-1.0L); using namespace std; void scans(string& str) { char c; str = ""; scanf("%c", &c); if (c == '\n')scanf("%c", &c); while (c != '\n' && c != -1 && c != ' ') { str += c; scanf("%c", &c); } } void scanc(char& str) { char c; scanf("%c", &c); if (c == -1)return; while (c == '\n') { scanf("%c", &c); } str = c; } double acot(double x) { return PI / 2 - atan(x); } ll LSB(ll n) { return (n & (-n)); } template<typename T> inline T chmin(T& a, const T& b) { if (a > b)a = b; return a; } template<typename T> inline T chmax(T& a, const T& b) { if (a < b)a = b; return a; } //cpp_int #if __has_include(<boost/multiprecision/cpp_int.hpp>) #include <boost/multiprecision/cpp_int.hpp> #include <boost/multiprecision/cpp_dec_float.hpp> using namespace boost::multiprecision; #else using cpp_int = ll; #endif //atcoder library #if __has_include(<atcoder/all>) #include <atcoder/all> //using namespace atcoder; #endif /* random_device seed_gen; mt19937 engine(seed_gen()); uniform_int_distribution dist(1, 100); */ /*----------------------------------------------------------------------------------*/ /* * @title template(graph) * @docs kyopro/docs/graph_template.md */ template<typename T> struct edge { T cost; int from, to; edge(int from, int to) : from(from), to(to), cost(T(1)) {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} }; template<typename T = int> struct graph { int n; bool directed, weighted; vector<vector<edge<T>>> g; graph(int n, bool directed, bool weighted) : g(n), n(n), directed(directed), weighted(weighted) {} void add_edge(int from, int to, T cost = T(1)) { g[from].emplace_back(from, to, cost); if (not directed) { g[to].emplace_back(to, from, cost); } } vector<edge<T>>& operator[](const int& idx) { return g[idx]; } void read(int e, bool one_indexed) { int a, b, c = 1; while (e--) { scanf("%d%d", &a, &b); if (weighted) { scanf("%d", &c); } if (one_indexed)--a, --b; add_edge(a, b, c); } } void read(int e, bool one_indexed, const string& format) { int a, b; T c = T(1); while (e--) { scanf("%d%d", &a, &b); if (weighted) { scanf(format.c_str(), &c); } if (one_indexed)--a, --b; add_edge(a, b, c); } } }; /* * @title dijkstra * @docs kyopro/docs/dijkstra.md */ template<typename T = int> vector<T> dijkstra(graph<T>& g, const int& v, const int& n, const T Inf) { priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>> priq; vector<T> res(n); fill(all(res), Inf); priq.push({ 0, v }); res[v] = 0; int top; while (!priq.empty()) { top = priq.top().second; T cost = priq.top().first; priq.pop(); if (cost > res[top])continue; for (const auto& aa : g[top]) { if (res[top] + aa.cost >= res[aa.to])continue; res[aa.to] = aa.cost + res[top]; priq.push({ res[aa.to], aa.to }); } } return res; } int main() { int n, m; scanf("%d%d", &n, &m); vector<int> a(m); rep(i, m) { scanf("%d", &a[i]); --a[i]; } graph<ll> g(n * (m + 1), false, true); rep(i, m) { rep(j, n - 1)g.add_edge(i * n + j, i * n + j + 1, 1); rep(j, n) { if (a[i] == j) { g.add_edge(i * n + j, (i + 1) * n + j + 1, 0); g.add_edge(i * n + j + 1, (i + 1) * n + j, 0); ++j; } else { g.add_edge(i * n + j, (i + 1) * n + j, 0); } } } rep(j, n - 1)g.add_edge(m * n + j, m * n + j + 1, 1); auto d = dijkstra(g, n * m, n * (m + 1), LINF); rep(i, n - 1)printf("%lld ", d[i + 1]); Please AC; }