結果

問題 No.2291 Union Find Estimate
ユーザー timitimi
提出日時 2024-02-12 22:39:20
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 5,924 bytes
コンパイル時間 219 ms
コンパイル使用メモリ 82,624 KB
実行使用メモリ 132,852 KB
最終ジャッジ日時 2024-09-28 18:12:42
合計ジャッジ時間 3,388 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 60 ms
68,532 KB
testcase_01 AC 62 ms
68,988 KB
testcase_02 AC 141 ms
79,412 KB
testcase_03 AC 140 ms
132,852 KB
testcase_04 AC 119 ms
78,824 KB
testcase_05 AC 121 ms
79,144 KB
testcase_06 AC 110 ms
78,972 KB
testcase_07 AC 97 ms
79,064 KB
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

from collections import Counter, defaultdict, deque
import sys
input=sys.stdin.readline
W,H=map(int,input().split())

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py
import math
from bisect import bisect_left, bisect_right, insort
from typing import Generic, Iterable, Iterator, TypeVar, Union, List
T = TypeVar('T')

class SortedMultiset(Generic[T]):
    BUCKET_RATIO = 50
    REBUILD_RATIO = 170

    def _build(self, a=None) -> None:
        "Evenly divide `a` into buckets."
        if a is None: a = list(self)
        size = self.size = len(a)
        bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
        self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]

    def __init__(self, a: Iterable[T] = []) -> None:
        "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)"
        a = list(a)
        if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)):
            a = sorted(a)
        self._build(a)

    def __iter__(self) -> Iterator[T]:
        for i in self.a:
            for j in i: yield j

    def __reversed__(self) -> Iterator[T]:
        for i in reversed(self.a):
            for j in reversed(i): yield j

    def __len__(self) -> int:
        return self.size

    def __repr__(self) -> str:
        return "SortedMultiset" + str(self.a)

    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1 : len(s) - 1] + "}"

    def _find_bucket(self, x: T) -> List[T]:
        "Find the bucket which should contain x. self must not be empty."
        for a in self.a:
            if x <= a[-1]: return a
        return a

    def __contains__(self, x: T) -> bool:
        if self.size == 0: return False
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        return i != len(a) and a[i] == x

    def count(self, x: T) -> int:
        "Count the number of x."
        return self.index_right(x) - self.index(x)

    def add(self, x: T) -> None:
        "Add an element. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return
        a = self._find_bucket(x)
        insort(a, x)
        self.size += 1
        if len(a) > len(self.a) * self.REBUILD_RATIO:
            self._build()

    def discard(self, x: T) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0: return False
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        if i == len(a) or a[i] != x: return False
        a.pop(i)
        self.size -= 1
        if len(a) == 0: self._build()
        return True

    def lt(self, x: T) -> Union[T, None]:
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]

    def le(self, x: T) -> Union[T, None]:
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]

    def gt(self, x: T) -> Union[T, None]:
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]

    def ge(self, x: T) -> Union[T, None]:
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]

    def __getitem__(self, x: int) -> T:
        "Return the x-th element, or IndexError if it doesn't exist."
        if x < 0: x += self.size
        if x < 0: raise IndexError
        for a in self.a:
            if x < len(a): return a[x]
            x -= len(a)
        raise IndexError

    def index(self, x: T) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans

    def index_right(self, x: T) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans

st = SortedMultiset()
N=W
par=[i for i in range(N)]
rank=[0]*(N)
friend=[0]*N
block=[0]*N
size=[1]*N
def find(x):
  if par[x]==x:
    return x
  else:
    par[x]=find(par[x])
    return par[x]
 
#同じ集合か判定
def same(x,y):
  return find(x)==find(y)
 
def union(x,y):
  x=find(x)
  y=find(y)
  if x==y:
    return 
  if rank[x]>rank[y]:
    par[y]=x
    size[x]+=size[y]
  else:
    par[x]=y
    size[y]+=size[x]
    if rank[x]==rank[y]:
      rank[y]+=1

mod=998244353
def xgcd(a, b):
    x0, y0, x1, y1 = 1, 0, 0, 1
    while b != 0:
        q, a, b = a // b, b, a % b
        x0, x1 = x1, x0 - q * x1
        y0, y1 = y1, y0 - q * y1
    return a, x0, y0

def modinv(a, m):
    g, x, y = xgcd(a, m)
    if g != 1:
        raise Exception('modular inverse does not exist')
    else:
        return x % m
gt=modinv(10,mod)
ans=pow(10,N,mod);F=[-1]*N
E={}
for i in range(N):
  E[i]=10 
  
for i in range(H):
  S=input()
  D={}
  for j in range(W):
    s=S[j]
    if s.isdigit():
      if F[find(j)]==-1 or F[find(j)]==s:
        F[find(j)]=s
      else:
        ans*=0
      if E[find(j)]==10:
        ans*=gt
        ans%=mod 
        E[find(j)]=1 
    elif s!='?':
      if s not in D:
        D[s]=[]
      D[s].append(j)
  for d in D:
    B=D[d]
    for k in range(1,len(B)):
      p,q=B[0],B[k]
      pp,qq=find(p),find(q)
      union(p,q)
      if F[pp]==F[qq]:
        if F[pp]==-1:
          ans*=gt
          ans%=mod
      else:
        if F[pp]==-1 or F[qq]==-1:
          F[find(p)]=str(max(int(F[pp]),int(F[qq])))
          ans*=gt 
          ans%=mod
        else:
          ans*=0
  print(ans)
  
0