結果
問題 | No.2628 Shrinkage |
ユーザー | 👑 emthrm |
提出日時 | 2024-02-16 21:47:46 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 25,221 bytes |
コンパイル時間 | 4,535 ms |
コンパイル使用メモリ | 288,548 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-09-28 20:01:35 |
合計ジャッジ時間 | 5,146 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
ソースコード
#include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; // constexpr int MOD = 1000000007; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; namespace geometry_int { using Integer = long long; int sgn(const Integer x) { return x > 0 ? 1 : (x < 0 ? -1 : 0); } struct Point { Integer x, y; explicit Point(const Integer x = 0, const Integer y = 0) : x(x), y(y) {} Integer norm() const { return x * x + y * y; } Point& operator+=(const Point& p) { x += p.x; y += p.y; return *this; } Point& operator-=(const Point& p) { x -= p.x; y -= p.y; return *this; } Point& operator*=(const Integer k) { x *= k; y *= k; return *this; } Point& operator/=(const Integer k) { x /= k; y /= k; return *this; } std::strong_ordering operator<=>(const Point& p) const { const int x_sgn = sgn(p.x - x); if (x_sgn == 0) return 0 <=> sgn(p.y - y); return x_sgn == 1 ? std::strong_ordering::less : std::strong_ordering::greater; } Point operator+() const { return *this; } Point operator-() const { return Point(-x, -y); } Point operator+(const Point& p) const { return Point(*this) += p; } Point operator-(const Point& p) const { return Point(*this) -= p; } Point operator*(const Integer k) const { return Point(*this) *= k; } Point operator/(const Integer k) const { return Point(*this) /= k; } friend std::ostream& operator<<(std::ostream& os, const Point& p) { return os << '(' << p.x << ", " << p.y << ')'; } friend std::istream& operator>>(std::istream& is, Point& p) { Integer x, y; is >> x >> y; p = Point(x, y); return is; } }; struct Segment { Point s, t; explicit Segment(const Point& s = Point(0, 0), const Point& t = Point(0, 0)) : s(s), t(t) {} }; struct Line : Segment { using Segment::Segment; }; struct Circle { Point p; Integer r; explicit Circle(const Point& p = Point(0, 0), const Integer r = 0) : p(p), r(r) {} }; Integer cross(const Point& a, const Point& b) { return a.x * b.y - a.y * b.x; } Integer dot(const Point& a, const Point& b) { return a.x * b.x + a.y * b.y; } int ccw(const Point& a, const Point& b, const Point& c) { const Point ab = b - a, ac = c - a; const int sign = sgn(cross(ab, ac)); if (sign == 0) { if (sgn(dot(ab, ac)) == -1) return 2; if (sgn(ac.norm() - ab.norm()) == 1) return -2; } return sign; } Integer closest_pair(std::vector<Point> ps) { const int n = ps.size(); assert(n >= 2); std::sort(ps.begin(), ps.end()); const auto f = [&ps](auto f, const int left, const int right) -> Integer { const int mid = std::midpoint(left, right); Integer x_mid = ps[mid].x, d = std::numeric_limits<Integer>::max(); if (left + 1 < mid) d = std::min(d, f(f, left, mid)); if (mid + 1 < right) d = std::min(d, f(f, mid, right)); std::inplace_merge(std::next(ps.begin(), left), std::next(ps.begin(), mid), std::next(ps.begin(), right), [](const Point& a, const Point& b) -> bool { return sgn(b.y - a.y) == 1; }); std::vector<Point> tmp; for (int i = left; i < right; ++i) { if (sgn((ps[i].x - x_mid) * (ps[i].x - x_mid) - d) == 1) continue; for (int j = std::ssize(tmp) - 1; j >= 0; --j) { const Point v = ps[i] - tmp[j]; if (sgn(v.y * v.y - d) == 1) break; d = std::min(d, v.norm()); } tmp.emplace_back(ps[i]); } return d; }; return f(f, 0, n); } bool is_parallel(const Segment& a, const Segment& b) { return sgn(cross(a.t - a.s, b.t - b.s)) == 0; } bool is_orthogonal(const Segment& a, const Segment& b) { return sgn(dot(a.t - a.s, b.t - b.s)) == 0; } int common_tangent_num(const Circle&, const Circle&); bool has_intersected(const Segment& a, const Point& b) { return ccw(a.s, a.t, b) == 0; } bool has_intersected(const Segment& a, const Segment& b) { return ccw(a.s, a.t, b.s) * ccw(a.s, a.t, b.t) <= 0 && ccw(b.s, b.t, a.s) * ccw(b.s, b.t, a.t) <= 0; } bool has_intersected(const Line& a, const Point& b) { const int c = ccw(a.s, a.t, b); return c != 1 && c != -1; } bool has_intersected(const Line& a, const Segment& b) { return ccw(a.s, a.t, b.s) * ccw(a.s, a.t, b.t) != 1; } bool has_intersected(const Line& a, const Line& b) { return sgn(cross(a.t - a.s, b.t - b.s)) != 0 || sgn(cross(a.t - a.s, b.s - a.s)) == 0; } bool has_intersected(const Circle& a, const Point& b) { return (a.p - b).norm() == a.r * a.r; } bool has_intersected(const Circle& a, const Circle& b) { const int num = common_tangent_num(a, b); return 1 <= num && num <= 3; } int common_tangent_num(const Circle& a, const Circle& b) { const Integer dist = (a.p - b.p).norm(); int sign = sgn((a.r + b.r) * (a.r + b.r) - dist); if (sign == -1) return 4; if (sign == 0) return 3; sign = sgn((b.r - a.r) * (b.r - a.r) - dist); if (sign == -1) return 2; if (sign == 0) return 1; return 0; } using Polygon = std::vector<Point>; Integer area(Polygon a) { const int n = a.size(); a.resize(n + 1); a.back() = a.front(); Integer res = 0; for (int i = 0; i < n; ++i) { res += cross(a[i], a[i + 1]); } // return res / 2; return res; } int contains(Polygon a, const Point &b) { const int n = a.size(); a.resize(n + 1); a.back() = a.front(); bool is_in = false; for (int i = 0; i < n; ++i) { Point p = a[i] - b, q = a[i + 1] - b; if (sgn(q.y - p.y) == -1) std::swap(p, q); const int sign = sgn(cross(p, q)); if (sign == 1 && sgn(p.y) != 1 && sgn(q.y) == 1) is_in = !is_in; if (sign == 0 && sgn(dot(p, q)) != 1) return 1; } return is_in ? 2 : 0; } bool is_convex(Polygon a) { const int n = a.size(); a.resize(n + 2); a[n] = a[0]; a[n + 1] = a[1]; for (int i = 1; i <= n; ++i) { if (ccw(a[i - 1], a[i], a[i + 1]) == -1) return false; } return true; } template <bool IS_TIGHT = true> Polygon monotone_chain(std::vector<Point> ps) { const int n = ps.size(); std::sort(ps.begin(), ps.end()); Polygon convex_hull(n << 1); int idx = 0; for (int i = 0; i < n; convex_hull[idx++] = ps[i++]) { while (idx >= 2 && sgn(cross(convex_hull[idx - 1] - convex_hull[idx - 2], ps[i] - convex_hull[idx - 1])) < IS_TIGHT) { --idx; } } for (int i = n - 2, border = idx + 1; i >= 0; convex_hull[idx++] = ps[i--]) { while (idx >= border && sgn(cross(convex_hull[idx - 1] - convex_hull[idx - 2], ps[i] - convex_hull[idx - 1])) < IS_TIGHT) { --idx; } } convex_hull.resize(idx - 1); return convex_hull; } std::pair<Point, Point> rotating_calipers(Polygon a) { const int n = a.size(); if (n <= 2) [[unlikely]] { assert(n == 2); return {a[0], a[1]}; } a.resize(n + 1); a.back() = a.front(); int high = 0, low = 0; for (int i = 1; i < n; ++i) { if (a[i].y > a[high].y) high = i; if (a[i].y < a[low].y) low = i; } Integer max_norm = (a[high] - a[low]).norm(); int i = high, j = low, argmax_i = i, argmax_j = j; do { int* i_or_j = &(sgn(cross(a[i + 1] - a[i], a[j + 1] - a[j])) != -1 ? j : i); if (++(*i_or_j) == n) *i_or_j = 0; const Integer tmp = (a[j] - a[i]).norm(); if (sgn(tmp - max_norm) == 1) { max_norm = tmp; argmax_i = i; argmax_j = j; } } while (i != high || j != low); return {a[argmax_i], a[argmax_j]}; } } // namespace geometry_int namespace geometry { using Real = double; int sgn(const Real x) { static constexpr Real EPS = 1e-8; return x > EPS ? 1 : (x < -EPS ? -1 : 0); } Real degree_to_radian(const Real d) { return d * std::numbers::pi / 180; } Real radian_to_degree(const Real r) { return r * 180 / std::numbers::pi; } struct Point { Real x, y; explicit Point(const Real x = 0, const Real y = 0) : x(x), y(y) {} Real abs() const { return std::sqrt(norm()); } Real arg() const { const Real res = std::atan2(y, x); return res < 0 ? res + std::numbers::pi * 2 : res; } Real norm() const { return x * x + y * y; } Point rotate(const Real angle) const { const Real cs = std::cos(angle), sn = std::sin(angle); return Point(x * cs - y * sn, x * sn + y * cs); } Point& operator+=(const Point& p) { x += p.x; y += p.y; return *this; } Point& operator-=(const Point& p) { x -= p.x; y -= p.y; return *this; } Point& operator*=(const Real k) { x *= k; y *= k; return *this; } Point& operator/=(const Real k) { x /= k; y /= k; return *this; } std::partial_ordering operator<=>(const Point& p) const { const int x_sgn = sgn(p.x - x); if (x_sgn == 0) return 0 <=> sgn(p.y - y); return x_sgn == 1 ? std::partial_ordering::less : std::partial_ordering::greater; } Point operator+() const { return *this; } Point operator-() const { return Point(-x, -y); } Point operator+(const Point& p) const { return Point(*this) += p; } Point operator-(const Point& p) const { return Point(*this) -= p; } Point operator*(const Real k) const { return Point(*this) *= k; } Point operator/(const Real k) const { return Point(*this) /= k; } friend std::ostream& operator<<(std::ostream& os, const Point& p) { return os << '(' << p.x << ", " << p.y << ')'; } friend std::istream& operator>>(std::istream& is, Point& p) { Real x, y; is >> x >> y; p = Point(x, y); return is; } }; struct Segment { Point s, t; explicit Segment(const Point& s = Point(0, 0), const Point& t = Point(0, 0)) : s(s), t(t) {} }; struct Line : Segment { using Segment::Segment; explicit Line(const Real a, const Real b, const Real c) { if (sgn(a) == 0) { s = Point(0, -c / b); t = Point(1, s.y); } else if (sgn(b) == 0) { s = Point(-c / a, 0); t = Point(s.x, 1); } else if (sgn(c) == 0) { s = Point(0, 0); t = Point(1, -a / b); } else { s = Point(0, -c / b); t = Point(-c / a, 0); } } }; struct Circle { Point p; Real r; explicit Circle(const Point& p = Point(0, 0), const Real r = 0) : p(p), r(r) {} }; Point unit_vector(const Point& p) { const Real a = p.abs(); return Point(p.x / a, p.y / a); } std::tuple<Point, Point> normal_unit_vector(const Point& p) { const Point u = unit_vector(p); return {Point(-u.y, u.x), Point(u.y, -u.x)}; } Real cross(const Point& a, const Point& b) { return a.x * b.y - a.y * b.x; } Real dot(const Point& a, const Point& b) { return a.x * b.x + a.y * b.y; } int ccw(const Point& a, const Point& b, const Point& c) { const Point ab = b - a, ac = c - a; const int sign = sgn(cross(ab, ac)); if (sign == 0) { if (sgn(dot(ab, ac)) == -1) return 2; if (sgn(ac.norm() - ab.norm()) == 1) return -2; } return sign; } Real get_angle(const Point& a, const Point& b, const Point& c) { Real ab = (a - b).arg(), bc = (c - b).arg(); if (ab > bc) std::swap(ab, bc); return std::min(bc - ab, static_cast<Real>(std::numbers::pi * 2 - (bc - ab))); } Real closest_pair(std::vector<Point> ps) { const int n = ps.size(); assert(n >= 2); std::sort(ps.begin(), ps.end()); const auto f = [&ps](auto f, const int left, const int right) -> Real { const int mid = std::midpoint(left, right); Real x_mid = ps[mid].x, d = std::numeric_limits<Real>::max(); if (left + 1 < mid) d = std::min(d, f(f, left, mid)); if (mid + 1 < right) d = std::min(d, f(f, mid, right)); std::inplace_merge(std::next(ps.begin(), left), std::next(ps.begin(), mid), std::next(ps.begin(), right), [](const Point& a, const Point& b) -> bool { return sgn(b.y - a.y) == 1; }); std::vector<Point> tmp; for (int i = left; i < right; ++i) { if (sgn(std::abs(ps[i].x - x_mid) - d) == 1) continue; for (int j = std::ssize(tmp) - 1; j >= 0; --j) { const Point v = ps[i] - tmp[j]; if (sgn(v.y - d) == 1) break; d = std::min(d, v.abs()); } tmp.emplace_back(ps[i]); } return d; }; return f(f, 0, n); } Point projection(const Segment& a, const Point& b) { return a.s + (a.t - a.s) * dot(a.t - a.s, b - a.s) / (a.t - a.s).norm(); } Point reflection(const Segment& a, const Point& b) { return projection(a, b) * 2 - b; } bool is_parallel(const Segment& a, const Segment& b) { return sgn(cross(a.t - a.s, b.t - b.s)) == 0; } bool is_orthogonal(const Segment& a, const Segment& b) { return sgn(dot(a.t - a.s, b.t - b.s)) == 0; } Real distance(const Point&, const Point&); Real distance(const Segment&, const Point&); Real distance(const Line&, const Point&); int common_tangent_num(const Circle&, const Circle&); bool has_intersected(const Segment& a, const Point& b) { return ccw(a.s, a.t, b) == 0; } bool has_intersected(const Segment& a, const Segment& b) { return ccw(a.s, a.t, b.s) * ccw(a.s, a.t, b.t) <= 0 && ccw(b.s, b.t, a.s) * ccw(b.s, b.t, a.t) <= 0; } bool has_intersected(const Line& a, const Point& b) { const int c = ccw(a.s, a.t, b); return c != 1 && c != -1; } bool has_intersected(const Line& a, const Segment& b) { return ccw(a.s, a.t, b.s) * ccw(a.s, a.t, b.t) != 1; } bool has_intersected(const Line& a, const Line& b) { return sgn(cross(a.t - a.s, b.t - b.s)) != 0 || sgn(cross(a.t - a.s, b.s - a.s)) == 0; } bool has_intersected(const Circle& a, const Point& b) { return sgn(distance(a.p, b) - a.r) == 0; } bool has_intersected(const Circle& a, const Segment& b) { return sgn(a.r - distance(b, a.p)) != -1 && sgn(std::max(distance(a.p, b.s), distance(a.p, b.t)) - a.r) != -1; } bool has_intersected(const Circle& a, const Line& b) { return sgn(a.r - distance(b, a.p)) != -1; } bool has_intersected(const Circle& a, const Circle& b) { const int num = common_tangent_num(a, b); return 1 <= num && num <= 3; } Point intersection(const Line& a, const Line& b) { assert(has_intersected(a, b) && !is_parallel(a, b)); const Point va = a.t - a.s, vb = b.t - b.s; return a.s + va * cross(vb, b.s - a.s) / cross(vb, va); } Point intersection(const Segment& a, const Segment& b) { assert(has_intersected(a, b)); if (is_parallel(a, b)) { if (sgn(distance(a.s, b.s)) == 0) { assert(sgn(dot(a.t - a.s, b.t - a.s)) == -1); return a.s; } else if (sgn(distance(a.s, b.t)) == 0) { assert(sgn(dot(a.t - a.s, b.s - a.s)) == -1); return a.s; } else if (sgn(distance(a.t, b.s)) == 0) { assert(sgn(dot(a.s - a.t, b.t - a.t)) == -1); return a.t; } else if (sgn(distance(a.t, b.t)) == 0) { assert(sgn(dot(a.s - a.t, b.s - a.t)) == -1); return a.t; } else { assert(false); } } else { return intersection(Line(a.s, a.t), Line(b.s, b.t)); } } Point intersection(const Line& a, const Segment& b) { assert(has_intersected(a, b)); return intersection(a, Line(b.s, b.t)); } std::vector<Point> intersection(const Circle& a, const Line& b) { const Point pro = projection(b, a.p); const Real nor = (a.p - pro).norm(); const int sign = sgn(a.r - std::sqrt(nor)); if (sign == -1) return {}; if (sign == 0) return {pro}; const Point tmp = unit_vector(b.t - b.s) * std::sqrt(a.r * a.r - nor); return {pro + tmp, pro - tmp}; } std::vector<Point> intersection(const Circle& a, const Segment& b) { if (!has_intersected(a, b)) return {}; const std::vector<Point> res = intersection(a, Line(b.s, b.t)); if (sgn(distance(a.p, b.s) - a.r) != -1 && sgn(distance(a.p, b.t) - a.r) != -1) { return res; } return {res[sgn(dot(res[0] - b.s, res[0] - b.t)) == 1 ? 1 : 0]}; } std::vector<Point> intersection(const Circle& a, const Circle& b) { const int num = common_tangent_num(a, b); if (num == 0 || num == 4) return {}; const Real alpha = (b.p - a.p).arg(); if (num == 1 || num == 3) { return {Point(a.p.x + a.r * std::cos(alpha), a.p.y + a.r * std::sin(alpha))}; } const Real dist = (b.p - a.p).norm(); const Real beta = std::acos((dist + a.r * a.r - b.r * b.r) / (2 * std::sqrt(dist) * a.r)); return { a.p + Point(a.r * std::cos(alpha + beta), a.r * std::sin(alpha + beta)), a.p + Point(a.r * std::cos(alpha - beta), a.r * std::sin(alpha - beta))}; } Real distance(const Point& a, const Point& b) { return (b - a).abs(); } Real distance(const Segment& a, const Point& b) { const Point foot = projection(a, b); return has_intersected(a, foot) ? distance(foot, b) : std::min(distance(a.s, b), distance(a.t, b)); } Real distance(const Segment& a, const Segment& b) { return has_intersected(a, b) ? 0 : std::min({distance(a, b.s), distance(a, b.t), distance(b, a.s), distance(b, a.t)}); } Real distance(const Line& a, const Point& b) { return distance(projection(a, b), b); } Real distance(const Line& a, const Segment& b) { return has_intersected(a, b) ? 0 : std::min(distance(a, b.s), distance(a, b.t)); } Real distance(const Line& a, const Line& b) { return has_intersected(a, b) ? 0 : distance(a, b.s); } std::vector<Point> tangency(const Circle& a, const Point& b) { const Real dist = distance(a.p, b); const int sign = sgn(dist - a.r); if (sign == -1) return {}; if (sign == 0) return {b}; const Real alpha = (b - a.p).arg(), beta = std::acos(a.r / dist); return { a.p + Point(a.r * std::cos(alpha + beta), a.r * std::sin(alpha + beta)), a.p + Point(a.r * std::cos(alpha - beta), a.r * std::sin(alpha - beta))}; } int common_tangent_num(const Circle& a, const Circle& b) { const Real dist = distance(a.p, b.p); int sign = sgn(a.r + b.r - dist); if (sign == -1) return 4; if (sign == 0) return 3; sign = sgn((sgn(a.r - b.r) == -1 ? b.r - a.r : a.r - b.r) - dist); if (sign == -1) return 2; if (sign == 0) return 1; return 0; } std::vector<Line> common_tangent(const Circle& a, const Circle& b) { std::vector<Line> tangents; const Real dist = distance(a.p, b.p), argument = (b.p - a.p).arg(); int sign = sgn(a.r + b.r - dist); if (sign == -1) { const Real ac = std::acos((a.r + b.r) / dist); Real alpha = argument + ac, cs = std::cos(alpha), sn = std::sin(alpha); tangents.emplace_back(a.p + Point(a.r * cs, a.r * sn), b.p + Point(-b.r * cs, -b.r * sn)); alpha = argument - ac; cs = std::cos(alpha); sn = std::sin(alpha); tangents.emplace_back(a.p + Point(a.r * cs, a.r * sn), b.p + Point(-b.r * cs, -b.r * sn)); } else if (sign == 0) { const Point s = a.p + Point(a.r * std::cos(argument), a.r * std::sin(argument)); tangents.emplace_back(s, s + std::get<0>(normal_unit_vector(b.p - a.p))); } if (sgn(b.r - a.r) == -1) { sign = sgn(a.r - b.r - dist); if (sign == -1) { const Real at = std::acos((a.r - b.r) / dist); Real alpha = argument + at, cs = std::cos(alpha), sn = std::sin(alpha); tangents.emplace_back(a.p + Point(a.r * cs, a.r * sn), b.p + Point(b.r * cs, b.r * sn)); alpha = argument - at; cs = std::cos(alpha); sn = std::sin(alpha); tangents.emplace_back(a.p + Point(a.r * cs, a.r * sn), b.p + Point(b.r * cs, b.r * sn)); } else if (sign == 0) { const Point s = a.p + Point(a.r * std::cos(argument), a.r * std::sin(argument)); tangents.emplace_back(s, s + std::get<0>(normal_unit_vector(b.p - a.p))); } } else { sign = sgn(b.r - a.r - dist); if (sign == -1) { const Real at = std::acos((b.r - a.r) / dist); Real alpha = argument - at, cs = std::cos(alpha), sn = std::sin(alpha); tangents.emplace_back(a.p + Point(-a.r * cs, -a.r * sn), b.p + Point(-b.r * cs, -b.r * sn)); alpha = argument + at; cs = std::cos(alpha); sn = std::sin(alpha); tangents.emplace_back(a.p + Point(-a.r * cs, -a.r * sn), b.p + Point(-b.r * cs, -b.r * sn)); } else if (sign == 0) { const Point s = b.p + Point(-b.r * std::cos(argument), -b.r * std::sin(argument)); tangents.emplace_back(s, s + std::get<0>(normal_unit_vector(a.p - b.p))); } } return tangents; } Real intersection_area(const Circle& a, const Circle& b) { const Real nor = (b.p - a.p).norm(), dist = std::sqrt(nor); if (sgn(a.r + b.r - dist) != 1) return 0; if (sgn(std::abs(a.r - b.r) - dist) != -1) { return std::min(a.r, b.r) * std::min(a.r, b.r) * std::numbers::pi; } const Real alpha = std::acos((nor + a.r * a.r - b.r * b.r) / (2 * dist * a.r)); const Real beta = std::acos((nor + b.r * b.r - a.r * a.r) / (2 * dist * b.r)); return (alpha - std::sin(alpha + alpha) * 0.5) * a.r * a.r + (beta - std::sin(beta + beta) * 0.5) * b.r * b.r; } using Polygon = std::vector<Point>; Real area(Polygon a) { const int n = a.size(); a.resize(n + 1); a.back() = a.front(); Real res = 0; for (int i = 0; i < n; ++i) { res += cross(a[i], a[i + 1]); } return res * 0.5; } Point centroid(Polygon a) { const int n = a.size(); a.resize(n + 1); a.back() = a.front(); Point res(0, 0); Real den = 0; for (int i = 0; i < n; ++i) { const Real cro = cross(a[i], a[i + 1]); res += (a[i] + a[i + 1]) / 3 * cro; den += cro; } return res / den; } int contains(Polygon a, const Point &b) { const int n = a.size(); a.resize(n + 1); a.back() = a.front(); bool is_in = false; for (int i = 0; i < n; ++i) { Point p = a[i] - b, q = a[i + 1] - b; if (sgn(q.y - p.y) == -1) std::swap(p, q); const int sign = sgn(cross(p, q)); if (sign == 1 && sgn(p.y) != 1 && sgn(q.y) == 1) is_in = !is_in; if (sign == 0 && sgn(dot(p, q)) != 1) return 1; } return is_in ? 2 : 0; } bool is_convex(Polygon a) { const int n = a.size(); a.resize(n + 2); a[n] = a[0]; a[n + 1] = a[1]; for (int i = 1; i <= n; ++i) { if (ccw(a[i - 1], a[i], a[i + 1]) == -1) return false; } return true; } template <bool IS_TIGHT = true> Polygon monotone_chain(std::vector<Point> ps) { const int n = ps.size(); std::sort(ps.begin(), ps.end()); Polygon convex_hull(n << 1); int idx = 0; for (int i = 0; i < n; convex_hull[idx++] = ps[i++]) { while (idx >= 2 && sgn(cross(convex_hull[idx - 1] - convex_hull[idx - 2], ps[i] - convex_hull[idx - 1])) < IS_TIGHT) { --idx; } } for (int i = n - 2, border = idx + 1; i >= 0; convex_hull[idx++] = ps[i--]) { while (idx >= border && sgn(cross(convex_hull[idx - 1] - convex_hull[idx - 2], ps[i] - convex_hull[idx - 1])) < IS_TIGHT) { --idx; } } convex_hull.resize(idx - 1); return convex_hull; } Polygon cut_convex(Polygon a, const Line& b) { const int n = a.size(); a.resize(n + 1); a.back() = a.front(); Polygon res; for (int i = 0; i < n; ++i) { const int c = ccw(b.s, b.t, a[i]); if (c != -1) res.emplace_back(a[i]); if (c * ccw(b.s, b.t, a[i + 1]) == -1) { res.emplace_back(intersection(Line(a[i], a[i + 1]), b)); } } return res.size() < 3 ? Polygon() : res; } std::tuple<Point, Point> rotating_calipers(Polygon a) { const int n = a.size(); if (n <= 2) [[unlikely]] { assert(n == 2); return {a[0], a[1]}; } a.resize(n + 1); a.back() = a.front(); int high = 0, low = 0; for (int i = 1; i < n; ++i) { if (a[i].y > a[high].y) high = i; if (a[i].y < a[low].y) low = i; } Real max_norm = (a[high] - a[low]).norm(); int i = high, j = low, argmax_i = i, argmax_j = j; do { int* i_or_j = &(sgn(cross(a[i + 1] - a[i], a[j + 1] - a[j])) != -1 ? j : i); if (++(*i_or_j) == n) *i_or_j = 0; const Real tmp = (a[j] - a[i]).norm(); if (sgn(tmp - max_norm) == 1) { max_norm = tmp; argmax_i = i; argmax_j = j; } } while (i != high || j != low); return {a[argmax_i], a[argmax_j]}; } } // namespace geometry bool solve() { geometry_int::Segment a, b; cin >> a.s >> b.s >> a.t >> b.t; if (geometry_int::is_parallel(a, b)) return false; const geometry::Line c(geometry::Point(a.s.x, a.s.y), geometry::Point(a.t.x, a.t.y)), d(geometry::Point(b.s.x, b.s.y), geometry::Point(b.t.x, b.t.y)); const geometry::Point p = geometry::intersection(c, d); return distance(c.s, c.t) / distance(c.s, p) == distance(d.s, d.t) / distance(d.s, p); } int main() { int t; cin >> t; while (t--) cout << (solve() ? "Yes\n" : "No\n"); return 0; }