結果
問題 | No.2634 Tree Distance 3 |
ユーザー | suisen |
提出日時 | 2024-02-16 23:15:10 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,805 ms / 3,000 ms |
コード長 | 45,185 bytes |
コンパイル時間 | 3,351 ms |
コンパイル使用メモリ | 250,400 KB |
実行使用メモリ | 47,760 KB |
最終ジャッジ日時 | 2024-09-28 21:56:55 |
合計ジャッジ時間 | 68,314 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 69 |
ソースコード
#include <bits/stdc++.h>namespace suisen {template <class T> bool chmin(T& x, const T& y) { return y >= x ? false : (x = y, true); }template <class T> bool chmax(T& x, const T& y) { return y <= x ? false : (x = y, true); }template <class T> constexpr int pow_m1(T n) { return -(n & 1) | 1; }template <class T> constexpr T fld(const T x, const T y) { T q = x / y, r = x % y; return q - ((x ^ y) < 0 and (r != 0)); }template <class T> constexpr T cld(const T x, const T y) { T q = x / y, r = x % y; return q + ((x ^ y) > 0 and (r != 0)); }}namespace suisen::macro {#define IMPL_REPITER(cond) auto& begin() { return *this; } auto end() { return nullptr; } auto& operator*() { return _val; } auto& operator++() {return _val += _step, *this; } bool operator!=(std::nullptr_t) { return cond; }template <class Int, class IntL = Int, class IntStep = Int, std::enable_if_t<(std::is_signed_v<Int> == std::is_signed_v<IntL>), std::nullptr_t> =nullptr> struct rep_impl {Int _val; const Int _end, _step;rep_impl(Int n) : rep_impl(0, n) {}rep_impl(IntL l, Int r, IntStep step = 1) : _val(l), _end(r), _step(step) {}IMPL_REPITER((_val < _end))};template <class Int, class IntL = Int, class IntStep = Int, std::enable_if_t<(std::is_signed_v<Int> == std::is_signed_v<IntL>), std::nullptr_t> =nullptr> struct rrep_impl {Int _val; const Int _end, _step;rrep_impl(Int n) : rrep_impl(0, n) {}rrep_impl(IntL l, Int r) : _val(r - 1), _end(l), _step(-1) {}rrep_impl(IntL l, Int r, IntStep step) : _val(l + fld<Int>(r - l - 1, step) * step), _end(l), _step(-step) {}IMPL_REPITER((_val >= _end))};template <class Int, class IntStep = Int> struct repinf_impl {Int _val; const Int _step;repinf_impl(Int l, IntStep step = 1) : _val(l), _step(step) {}IMPL_REPITER((true))};#undef IMPL_REPITER}#include <iostream>#include <limits>#include <type_traits>namespace suisen {template <typename ...Constraints> using constraints_t = std::enable_if_t<std::conjunction_v<Constraints...>, std::nullptr_t>;template <typename T, typename = std::nullptr_t> struct bitnum { static constexpr int value = 0; };template <typename T> struct bitnum<T, constraints_t<std::is_integral<T>>> { static constexpr int value = std::numeric_limits<std::make_unsigned_t<T>>::digits; };template <typename T> static constexpr int bitnum_v = bitnum<T>::value;template <typename T, size_t n> struct is_nbit { static constexpr bool value = bitnum_v<T> == n; };template <typename T, size_t n> static constexpr bool is_nbit_v = is_nbit<T, n>::value;template <typename T, typename = std::nullptr_t> struct safely_multipliable { using type = T; };template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 32>>> { using type = long long; };template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 64>>> { using type = __int128_t; };template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 32>>> { using type = unsigned long long; };template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 64>>> { using type = __uint128_t; };template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type;template <typename T, typename = void> struct rec_value_type { using type = T; };template <typename T> struct rec_value_type<T, std::void_t<typename T::value_type>> {using type = typename rec_value_type<typename T::value_type>::type;};template <typename T> using rec_value_type_t = typename rec_value_type<T>::type;template <typename T> class is_iterable {template <typename T_> static auto test(T_ e) -> decltype(e.begin(), e.end(), std::true_type{});static std::false_type test(...);public:static constexpr bool value = decltype(test(std::declval<T>()))::value;};template <typename T> static constexpr bool is_iterable_v = is_iterable<T>::value;template <typename T> class is_writable {template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::ostream&>() << e, std::true_type{});static std::false_type test(...);public:static constexpr bool value = decltype(test(std::declval<T>()))::value;};template <typename T> static constexpr bool is_writable_v = is_writable<T>::value;template <typename T> class is_readable {template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::istream&>() >> e, std::true_type{});static std::false_type test(...);public:static constexpr bool value = decltype(test(std::declval<T>()))::value;};template <typename T> static constexpr bool is_readable_v = is_readable<T>::value;} // namespace suisennamespace suisen::io {template <typename IStream, std::enable_if_t<std::conjunction_v<std::is_base_of<std::istream, std::remove_reference_t<IStream>>, std::negation<std::is_const<std::remove_reference_t<IStream>>>>, std::nullptr_t> = nullptr>struct InputStream {private:using istream_type = std::remove_reference_t<IStream>;IStream is;struct { InputStream* is; template <typename T> operator T() { T e; *is >> e; return e; } } _reader{ this };public:template <typename IStream_> InputStream(IStream_ &&is) : is(std::move(is)) {}template <typename IStream_> InputStream(IStream_ &is) : is(is) {}template <typename T> InputStream& operator>>(T& e) {if constexpr (suisen::is_readable_v<T>) is >> e; else _read(e);return *this;}auto read() { return _reader; }template <typename Head, typename... Tail>void read(Head& head, Tail &...tails) { ((*this >> head) >> ... >> tails); }istream_type& get_stream() { return is; }private:static __uint128_t _stou128(const std::string& s) {__uint128_t ret = 0;for (char c : s) if ('0' <= c and c <= '9') ret = 10 * ret + c - '0';return ret;}static __int128_t _stoi128(const std::string& s) { return (s[0] == '-' ? -1 : +1) * _stou128(s); }void _read(__uint128_t& v) { v = _stou128(std::string(_reader)); }void _read(__int128_t& v) { v = _stoi128(std::string(_reader)); }template <typename T, typename U>void _read(std::pair<T, U>& a) { *this >> a.first >> a.second; }template <size_t N = 0, typename ...Args>void _read(std::tuple<Args...>& a) { if constexpr (N < sizeof...(Args)) *this >> std::get<N>(a), _read<N + 1>(a); }template <typename Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr>void _read(Iterable& a) { for (auto& e : a) *this >> e; }};template <typename IStream>InputStream(IStream &&) -> InputStream<IStream>;template <typename IStream>InputStream(IStream &) -> InputStream<IStream&>;InputStream cin{ std::cin };auto read() { return cin.read(); }template <typename Head, typename... Tail>void read(Head& head, Tail &...tails) { cin.read(head, tails...); }} // namespace suisen::ionamespace suisen { using io::read; } // namespace suisennamespace suisen::io {template <typename OStream, std::enable_if_t<std::conjunction_v<std::is_base_of<std::ostream, std::remove_reference_t<OStream>>, std::negation<std::is_const<std::remove_reference_t<OStream>>>>, std::nullptr_t> = nullptr>struct OutputStream {private:using ostream_type = std::remove_reference_t<OStream>;OStream os;public:template <typename OStream_> OutputStream(OStream_ &&os) : os(std::move(os)) {}template <typename OStream_> OutputStream(OStream_ &os) : os(os) {}template <typename T> OutputStream& operator<<(const T& e) {if constexpr (suisen::is_writable_v<T>) os << e; else _print(e);return *this;}void print() { *this << '\n'; }template <typename Head, typename... Tail>void print(const Head& head, const Tail &...tails) { *this << head, ((*this << ' ' << tails), ...), *this << '\n'; }template <typename Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr>void print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") {for (auto it = v.begin(); it != v.end();) if (*this << *it; ++it != v.end()) *this << sep;*this << end;}ostream_type& get_stream() { return os; }private:void _print(__uint128_t value) {char buffer[41], *d = std::end(buffer);do *--d = '0' + (value % 10), value /= 10; while (value);os.rdbuf()->sputn(d, std::end(buffer) - d);}void _print(__int128_t value) {if (value < 0) *this << '-';_print(__uint128_t(value < 0 ? -value : value));}template <typename T, typename U>void _print(const std::pair<T, U>& a) { *this << a.first << ' ' << a.second; }template <size_t N = 0, typename ...Args>void _print(const std::tuple<Args...>& a) {if constexpr (N < std::tuple_size_v<std::tuple<Args...>>) {if constexpr (N) *this << ' ';*this << std::get<N>(a), _print<N + 1>(a);}}template <typename Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr>void _print(const Iterable& a) { print_all(a, " ", ""); }};template <typename OStream_>OutputStream(OStream_ &&) -> OutputStream<OStream_>;template <typename OStream_>OutputStream(OStream_ &) -> OutputStream<OStream_&>;OutputStream cout{ std::cout }, cerr{ std::cerr };template <typename... Args>void print(const Args &... args) { cout.print(args...); }template <typename Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr>void print_all(const Iterable& v, const std::string& sep = " ", const std::string& end = "\n") { cout.print_all(v, sep, end); }} // namespace suisen::ionamespace suisen { using io::print, io::print_all; } // namespace suisennamespace suisen {template <class T, class ToKey, class CompKey = std::less<>, std::enable_if_t<std::conjunction_v<std::is_invocable<ToKey, T>, std::is_invocable_r<bool, CompKey, std::invoke_result_t<ToKey, T>, std::invoke_result_t<ToKey, T>>>, std::nullptr_t> = nullptr>auto comparator(const ToKey& to_key, const CompKey& comp_key = std::less<>()) {return [=](const T& x, const T& y) { return comp_key(to_key(x), to_key(y)); };}template <class Compare, std::enable_if_t<std::is_invocable_r_v<bool, Compare, int, int>, std::nullptr_t> = nullptr>std::vector<int> sorted_indices(int n, const Compare& compare) {std::vector<int> p(n);return std::iota(p.begin(), p.end(), 0), std::sort(p.begin(), p.end(), compare), p;}template <class ToKey, std::enable_if_t<std::is_invocable_v<ToKey, int>, std::nullptr_t> = nullptr>std::vector<int> sorted_indices(int n, const ToKey& to_key) { return sorted_indices(n, comparator<int>(to_key)); }template <class T, class Comparator>auto priority_queue_with_comparator(const Comparator& comparator) { return std::priority_queue<T, std::vector<T>, Comparator>{ comparator }; }template <class Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr>void sort_unique_erase(Iterable& a) { std::sort(a.begin(), a.end()), a.erase(std::unique(a.begin(), a.end()), a.end()); }template <size_t D> struct Dim : std::array<int, D> {template <typename ...Ints> Dim(const Ints& ...ns) : std::array<int, D>::array{ static_cast<int>(ns)... } {}};template <typename ...Ints> Dim(const Ints& ...) -> Dim<sizeof...(Ints)>;template <class T, size_t D, size_t I = 0>auto ndvec(const Dim<D> &ns, const T& value = {}) {if constexpr (I + 1 < D) {return std::vector(ns[I], ndvec<T, D, I + 1>(ns, value));} else {return std::vector<T>(ns[I], value);}}}namespace suisen {using int128 = __int128_t;using uint128 = __uint128_t;template <class T> using min_priority_queue = std::priority_queue<T, std::vector<T>, std::greater<T>>;template <class T> using max_priority_queue = std::priority_queue<T, std::vector<T>, std::less<T>>;}namespace suisen { const std::string Yes = "Yes", No = "No", YES = "YES", NO = "NO"; }#ifdef LOCAL# define debug(...) debug_impl(#__VA_ARGS__, __VA_ARGS__)template <class H, class... Ts> void debug_impl(const char* s, const H& h, const Ts&... t) {suisen::io::cerr << "[\033[32mDEBUG\033[m] " << s << ": " << h, ((suisen::io::cerr << ", " << t), ..., (suisen::io::cerr << "\n"));}#else# define debug(...) void(0)#endif#define FOR(e, v) for (auto &&e : v)#define CFOR(e, v) for (const auto &e : v)#define REP(i, ...) CFOR(i, suisen::macro::rep_impl(__VA_ARGS__))#define RREP(i, ...) CFOR(i, suisen::macro::rrep_impl(__VA_ARGS__))#define REPINF(i, ...) CFOR(i, suisen::macro::repinf_impl(__VA_ARGS__))#define LOOP(n) for ([[maybe_unused]] const auto& _ : suisen::macro::rep_impl(n))#define ALL(iterable) std::begin(iterable), std::end(iterable)using namespace suisen;using namespace std;struct io_setup {io_setup(int precision = 20) {std::ios::sync_with_stdio(false), std::cin.tie(nullptr);std::cout << std::fixed << std::setprecision(precision);}} io_setup_{};constexpr int iinf = std::numeric_limits<int>::max() / 2;constexpr long long linf = std::numeric_limits<long long>::max() / 2;#include <deque>#include <queue>#include <tuple>#include <vector>#include <algorithm>#include <cassert>#include <optional>#include <utility>namespace suisen {namespace internal::csr_graph { struct graph_base_tag {}; }struct directed_graph_tag : internal::csr_graph::graph_base_tag {};struct undirected_graph_tag : internal::csr_graph::graph_base_tag {};template <typename T>struct is_graph_tag { static constexpr bool value = std::is_base_of_v<internal::csr_graph::graph_base_tag, T>; };template <typename T>constexpr bool is_graph_tag_v = is_graph_tag<T>::value;template <typename WeightType = void>struct Graph {template <typename GraphTag, typename, std::enable_if_t<is_graph_tag_v<GraphTag>, std::nullptr_t>>friend struct GraphBuilder;using weight_type = WeightType;static constexpr bool weighted = std::negation_v<std::is_same<weight_type, void>>;using weight_type_or_1 = std::conditional_t<weighted, weight_type, int>;using input_edge_type = std::conditional_t<weighted, std::tuple<int, int, weight_type>, std::pair<int, int>>;private:using internal_edge_type = std::conditional_t<weighted, std::pair<int, weight_type>, int>;struct Edge : public internal_edge_type {using internal_edge_type::internal_edge_type;operator int() const { return std::get<0>(*this); }};public:using edge_type = std::conditional_t<weighted, Edge, int>;private:struct AdjacentList {friend struct Graph;using value_type = edge_type;using iterator = typename std::vector<value_type>::iterator;using const_iterator = typename std::vector<value_type>::const_iterator;using reverse_iterator = typename std::vector<value_type>::reverse_iterator;using const_reverse_iterator = typename std::vector<value_type>::const_reverse_iterator;AdjacentList() = default;int size() const { return _siz; }bool empty() const { return _siz == 0; }int capacity() const { return _cap; }value_type& operator[](int i) { return *(begin() + i); }const value_type& operator[](int i) const { return *(cbegin() + i); }value_type& at(uint32_t i) { assert(i < _siz); return *(begin() + i); }const value_type& at(uint32_t i) const { assert(i < _siz); return *(cbegin() + i); }value_type* data() { return _g->_edges.data() + _offset; }const value_type* data() const { return _g->_edges.data() + _offset; }iterator begin() const { return _g->_edges.begin() + _offset; }iterator end() const { return begin() + _siz; }const_iterator cbegin() const { return _g->_edges.cbegin() + _offset; }const_iterator cend() const { return cbegin() + _siz; }reverse_iterator rbegin() const { return _g->_edges.rbegin() + (_g->_edges.size() - (_offset + _siz)); }reverse_iterator rend() const { return rbegin() + _siz; }const_reverse_iterator crbegin() const { return _g->_edges.crbegin() + (_g->_edges.size() - (_offset + _siz)); }const_reverse_iterator crend() const { return crbegin() + _siz; }void erase(const_iterator pos) {erase(pos, std::next(pos));}void erase(const_iterator first, const_iterator last) {const int num = last - first, k = first - cbegin();assert(num >= 0);if (num == 0) return;assert(0 <= k and k <= _siz - num);std::move(begin() + k + num, end(), begin() + k);_siz -= num;}void pop_back() {assert(_siz);--_siz;}void clear() { _siz = 0; }const value_type& back() const { return *--cend(); }value_type& back() { return *--end(); }const value_type& front() const { return *cbegin(); }value_type& front() { return *begin(); }void push_back(const value_type& x) {++_siz;assert(_siz <= _cap);back() = x;}template <typename ...Args>void emplace_back(Args &&...args) {++_siz;assert(_siz <= _cap);back() = value_type(std::forward<Args>(args)...);}void insert(const_iterator pos, const value_type& x) {emplace(pos, x);}void insert(const_iterator pos, int num, const value_type& x) {const int k = pos - cbegin();assert(0 <= k and k <= _siz);std::fill(begin() + k, shift_back(begin() + k, num), x);}template <class RandomAccessIterator>auto insert(const_iterator pos, RandomAccessIterator first, RandomAccessIterator last) -> decltype(*first++, last - first, void()) {const int num = last - first, k = pos - cbegin();assert(0 <= k and k <= _siz);shift_back(begin() + k, num);std::copy(first, last, begin() + k);}void insert(const_iterator pos, std::initializer_list<value_type> il) { insert(pos, il.begin(), il.end()); }template <typename ...Args>void emplace(const_iterator pos, Args &&...args) {const int k = pos - cbegin();assert(0 <= k and k <= _siz);*--shift_back(begin() + k) = value_type(std::forward<Args>(args)...);}private:mutable Graph* _g;int _cap;int _offset;int _siz;iterator shift_back(iterator pos, int num = 1) {_siz += num;assert(_siz <= _cap);return std::move_backward(pos, end() - num, end());}};public:using adjacent_list = AdjacentList;Graph() = default;template <typename GraphTag, std::enable_if_t<is_graph_tag_v<GraphTag>, std::nullptr_t> = nullptr>Graph(const int n, const std::vector<input_edge_type>& edges, GraphTag, std::vector<int> cap = {}) : _n(n), _adj(_n) {static constexpr bool undirected = std::is_same_v<undirected_graph_tag, GraphTag>;for (const auto& e : edges) {const int u = std::get<0>(e);++_adj[u]._siz;if constexpr (undirected) {const int v = std::get<1>(e);++_adj[v]._siz;}}if (cap.empty()) cap.resize(_n, std::numeric_limits<int>::max());int edge_num = 0;for (int i = 0; i < _n; ++i) {_adj[i]._g = this;_adj[i]._cap = std::min(_adj[i]._siz, cap[i]);_adj[i]._offset = edge_num;edge_num += _adj[i]._siz;}_edges.resize(edge_num);std::vector<typename std::vector<edge_type>::iterator> ptr(_n);for (int i = 0; i < _n; ++i) ptr[i] = _adj[i].begin();for (const auto& e : edges) {const int u = std::get<0>(e);const int v = std::get<1>(e);if constexpr (weighted) {const weight_type& w = std::get<2>(e);*ptr[u]++ = { v, w };if constexpr (undirected) *ptr[v]++ = { u, w };} else {*ptr[u]++ = v;if constexpr (undirected) *ptr[v]++ = u;}}}Graph(const std::vector<std::vector<edge_type>>& g) : Graph(g.size(), make_edges(g), directed_graph_tag{}) {}static Graph create_directed_graph(const int n, const std::vector<input_edge_type>& edges, const std::vector<int>& cap = {}) {return Graph(n, edges, directed_graph_tag{}, cap);}static Graph create_undirected_graph(const int n, const std::vector<input_edge_type>& edges, const std::vector<int>& cap = {}) {return Graph(n, edges, undirected_graph_tag{}, cap);}adjacent_list& operator[](int i) {_adj[i]._g = this;return _adj[i];}const adjacent_list& operator[](int i) const {_adj[i]._g = const_cast<Graph*>(this);return _adj[i];}int size() const {return _n;}void shrink_to_fit() {int edge_num = 0;for (const auto& l : _adj) edge_num += l.size();std::vector<edge_type> new_edges(edge_num);auto it = new_edges.begin();for (int i = 0; i < _n; ++i) {int nl = it - new_edges.begin();it = std::move(_adj[i].begin(), _adj[i].end(), it);_adj[i]._offset = nl;_adj[i]._cap = _adj[i]._siz;}_edges.swap(new_edges);}static weight_type_or_1 get_weight(const edge_type& edge) {if constexpr (weighted) return std::get<1>(edge);else return 1;}Graph reversed(const std::vector<int>& cap = {}) const {std::vector<input_edge_type> edges;for (int i = 0; i < _n; ++i) {for (const auto& edge : (*this)[i]) {if constexpr (weighted) edges.emplace_back(std::get<0>(edge), i, std::get<1>(edge));else edges.emplace_back(edge, i);}}return Graph(_n, std::move(edges), directed_graph_tag{}, cap);}struct DFSTree {std::vector<int> par;std::vector<int> pre_ord, pst_ord;Graph tree, back;};DFSTree dfs_tree(int start = 0) const {std::vector<input_edge_type> tree_edge, back_edge;std::vector<int> pre(_n), pst(_n);auto pre_it = pre.begin(), pst_it = pst.begin();std::vector<int> eid(_n, -1), par(_n, -2);std::vector<std::optional<weight_type_or_1>> par_w(_n, std::nullopt);for (int i = 0; i < _n; ++i) {int cur = (start + i) % _n;if (par[cur] != -2) continue;par[cur] = -1;while (cur >= 0) {++eid[cur];if (eid[cur] == 0) *pre_it++ = cur;if (eid[cur] == _adj[cur].size()) {*pst_it++ = cur;cur = par[cur];} else {const auto &e = _adj[cur][eid[cur]];weight_type_or_1 w = get_weight(e);int nxt = e;if (par[nxt] == -2) {tree_edge.emplace_back(make_edge(cur, e));par[nxt] = cur;par_w[nxt] = std::move(w);cur = nxt;} else if (eid[nxt] != _adj[nxt].size()) {if (par[cur] != nxt or par_w[cur] != w or not std::exchange(par_w[cur], std::nullopt).has_value()) {back_edge.emplace_back(make_edge(cur, e));}}}}}Graph tree = create_directed_graph(_n, tree_edge);Graph back = create_directed_graph(_n, back_edge);return DFSTree{ std::move(par), std::move(pre), std::move(pst), std::move(tree), std::move(back) };}private:int _n;std::vector<adjacent_list> _adj;std::vector<edge_type> _edges;static std::vector<input_edge_type> make_edges(const std::vector<std::vector<edge_type>>& g) {const int n = g.size();std::vector<input_edge_type> edges;for (int i = 0; i < n; ++i) for (const auto& e : g[i]) {edges.emplace_back(make_edge(i, e));}return edges;}static input_edge_type make_edge(int i, const edge_type& e) {if constexpr (weighted) return { i, std::get<0>(e), std::get<1>(e) };else return { i, e };}};template <typename GraphTag>Graph(int, std::vector<std::pair<int, int>>, GraphTag, std::vector<int> = {})->Graph<void>;template <typename WeightType, typename GraphTag>Graph(int, std::vector<std::tuple<int, int, WeightType>>, GraphTag, std::vector<int> = {})->Graph<WeightType>;Graph(std::vector<std::vector<int>>)->Graph<void>;template <typename WeightType>Graph(std::vector<std::vector<std::pair<int, WeightType>>>)->Graph<WeightType>;template <typename GraphTag, typename WeightType = void,std::enable_if_t<is_graph_tag_v<GraphTag>, std::nullptr_t> = nullptr>struct GraphBuilder {using graph_tag = GraphTag;using weight_type = WeightType;using edge_type = typename Graph<weight_type>::input_edge_type;GraphBuilder(int n = 0) : _n(n) {}void add_edge(const edge_type& edge) {check_not_moved();_edges.push_back(edge);}template <typename ...Args>void emplace_edge(Args &&...args) {check_not_moved();_edges.emplace_back(std::forward<Args>(args)...);}template <typename EdgeContainer, std::enable_if_t<std::is_constructible_v<edge_type, typename EdgeContainer::value_type>, std::nullptr_t> =nullptr>void add_edges(const EdgeContainer& edges) {for (const auto& edge : edges) add_edge(edge);}template <bool move_edges = true>Graph<weight_type> build() {if constexpr (move_edges) {_moved = true;return Graph<weight_type>(_n, std::move(_edges), graph_tag{});} else {return Graph<weight_type>(_n, _edges, graph_tag{});}}Graph<weight_type> build_without_move() {return build<false>();}static Graph<weight_type> build(const int n, const std::vector<edge_type>& edges) {GraphBuilder builder(n);builder.add_edges(edges);return builder.build();}private:int _n;std::vector<edge_type> _edges;bool _moved = false;void check_not_moved() {if (not _moved) return;std::cerr << "[\033[31mERROR\033[m] Edges are already moved. If you want to add edges after calling build() and build another graph, youshould use build_without_move() instead." << std::endl;assert(false);}};template <typename WeightType = void>using DirectedGraphBuilder = GraphBuilder<directed_graph_tag, WeightType>;template <typename WeightType = void>using UndirectedGraphBuilder = GraphBuilder<undirected_graph_tag, WeightType>;template <typename Weight, std::enable_if_t<std::negation_v<std::is_same<Weight, void>>, std::nullptr_t> = nullptr>using WeightedGraph = Graph<Weight>;using UnweightedGraph = Graph<void>;template <typename T>struct is_weighted_graph { static constexpr bool value = false; };template <typename WeightType>struct is_weighted_graph<Graph<WeightType>> { static constexpr bool value = Graph<WeightType>::weighted; };template <typename T>constexpr bool is_weighted_graph_v = is_weighted_graph<T>::value;template <typename T>struct is_unweighted_graph { static constexpr bool value = false; };template <typename WeightType>struct is_unweighted_graph<Graph<WeightType>> { static constexpr bool value = not Graph<WeightType>::weighted; };template <typename T>constexpr bool is_unweighted_graph_v = is_unweighted_graph<T>::value;} // namespace suisennamespace suisen {namespace internal {template <typename WeightType = void>struct CentroidDecomposition : Graph<WeightType> {friend struct CentroidDecompositionUnweighted;template <typename WeightType_, std::enable_if_t<not std::is_same_v<WeightType_, void>, std::nullptr_t>>friend struct CentroidDecompositionWeighted;using graph_type = Graph<WeightType>;using weight_type = WeightType;CentroidDecomposition(const graph_type& g) : graph_type(g), n(this->size()), cpar(n, -1), cdep(n, std::numeric_limits<int>::max()), csiz(n) {build();}int dct_parent(int i) const { return cpar[i]; }int dct_depth(int i) const { return cdep[i]; }int dct_size(int i) const { return csiz[i]; }private:int n;std::vector<int> cpar;std::vector<int> cdep;std::vector<int> csiz;void build() {std::vector<int> eid(n, 0);cpar[0] = -1, csiz[0] = n;std::deque<std::tuple<int, int>> dq{ { 0, 0 } };while (dq.size()) {const auto [r, dep] = dq.front();const int siz = csiz[r], prev_ctr = cpar[r];dq.pop_front();int c = -1;eid[r] = 0, csiz[r] = 1, cpar[r] = -1;for (int cur = r;;) {for (const int edge_num = int((*this)[cur].size());;) {if (eid[cur] == edge_num) {if (csiz[cur] * 2 > siz) {c = cur;} else {const int nxt = cpar[cur];csiz[nxt] += csiz[cur];cur = nxt;}break;}const int nxt = (*this)[cur][eid[cur]++];if (cdep[nxt] >= dep and nxt != cpar[cur]) {eid[nxt] = 0, csiz[nxt] = 1, cpar[nxt] = cur;cur = nxt;break;}}if (c >= 0) break;}for (int v : (*this)[c]) if (cdep[v] >= dep) {if (cpar[c] == v) cpar[v] = c, csiz[v] = siz - csiz[c];dq.emplace_back(v, dep + 1);}cpar[c] = prev_ctr, cdep[c] = dep, csiz[c] = siz;}}};struct CentroidDecompositionUnweighted : internal::CentroidDecomposition<void> {using base_type = internal::CentroidDecomposition<void>;using base_type::base_type;std::vector<std::vector<std::pair<int, int>>> collect(int root, int root_val = 0) const {std::vector<std::vector<std::pair<int, int>>> res{ { { root, root_val } } };for (int sub_root : (*this)[root]) if (this->cdep[sub_root] > this->cdep[root]) {res.emplace_back();std::deque<std::tuple<int, int, int>> dq{ { sub_root, root, root_val + 1 } };while (dq.size()) {auto [u, p, w] = dq.front();dq.pop_front();res.back().emplace_back(u, w);for (int v : (*this)[u]) if (v != p and this->cdep[v] > this->cdep[root]) {dq.emplace_back(v, u, w + 1);}}std::copy(res.back().begin(), res.back().end(), std::back_inserter(res.front()));}return res;}};template <typename WeightType, std::enable_if_t<not std::is_same_v<WeightType, void>, std::nullptr_t> = nullptr>struct CentroidDecompositionWeighted : internal::CentroidDecomposition<WeightType> {using base_type = internal::CentroidDecomposition<WeightType>;using base_type::base_type;using weight_type = typename base_type::weight_type;template <typename Op, std::enable_if_t<std::is_invocable_r_v<weight_type, Op, weight_type, weight_type>, std::nullptr_t> = nullptr>std::vector<std::vector<std::pair<int, weight_type>>> collect(int root, Op op, weight_type root_val) const {std::vector<std::vector<std::pair<int, weight_type>>> res{ { { root, root_val } } };for (auto [sub_root, ew] : (*this)[root]) if (this->cdep[sub_root] > this->cdep[root]) {res.emplace_back();std::deque<std::tuple<int, int, weight_type>> dq{ { sub_root, root, op(root_val, ew) } };while (dq.size()) {auto [u, p, w] = dq.front();dq.pop_front();res.back().emplace_back(u, w);for (auto [v, ew] : (*this)[u]) if (v != p and this->cdep[v] > this->cdep[root]) {dq.emplace_back(v, u, op(w, ew));}}std::copy(res.back().begin(), res.back().end(), std::back_inserter(res.front()));}return res;}};}using CentroidDecompositionUnweighted = internal::CentroidDecompositionUnweighted;template <typename WeightType, std::enable_if_t<not std::is_same_v<WeightType, void>, std::nullptr_t> = nullptr>using CentroidDecompositionWeighted = internal::CentroidDecompositionWeighted<WeightType>;} // namespace suisennamespace suisen {template <typename T>class CoordinateCompressorBuilder {public:struct Compressor {public:static constexpr int absent = -1;// default constructorCompressor() : _xs(std::vector<T>{}) {}// Construct from strictly sorted vectorCompressor(const std::vector<T> &xs) : _xs(xs) {assert(is_strictly_sorted(xs));}// Return the number of distinct keys.int size() const {return _xs.size();}// Check if the element is registered.bool has_key(const T &e) const {return std::binary_search(_xs.begin(), _xs.end(), e);}// Compress the element. if not registered, returns `default_value`. (default: Compressor::absent)int comp(const T &e, int default_value = absent) const {const int res = min_geq_index(e);return res != size() and _xs[res] == e ? res : default_value;}// Restore the element from the index.T decomp(const int compressed_index) const {return _xs[compressed_index];}// Compress the element. Equivalent to call `comp(e)`int operator[](const T &e) const {return comp(e);}// Return the minimum registered value greater than `e`. if not exists, return `default_value`.T min_gt(const T &e, const T &default_value) const {auto it = std::upper_bound(_xs.begin(), _xs.end(), e);return it == _xs.end() ? default_value : *it;}// Return the minimum registered value greater than or equal to `e`. if not exists, return `default_value`.T min_geq(const T &e, const T &default_value) const {auto it = std::lower_bound(_xs.begin(), _xs.end(), e);return it == _xs.end() ? default_value : *it;}// Return the maximum registered value less than `e`. if not exists, return `default_value`T max_lt(const T &e, const T &default_value) const {auto it = std::upper_bound(_xs.rbegin(), _xs.rend(), e, std::greater<T>());return it == _xs.rend() ? default_value : *it;}// Return the maximum registered value less than or equal to `e`. if not exists, return `default_value`T max_leq(const T &e, const T &default_value) const {auto it = std::lower_bound(_xs.rbegin(), _xs.rend(), e, std::greater<T>());return it == _xs.rend() ? default_value : *it;}// Return the compressed index of the minimum registered value greater than `e`. if not exists, return `compressor.size()`.int min_gt_index(const T &e) const {return std::upper_bound(_xs.begin(), _xs.end(), e) - _xs.begin();}// Return the compressed index of the minimum registered value greater than or equal to `e`. if not exists, return `compressor.size()`.int min_geq_index(const T &e) const {return std::lower_bound(_xs.begin(), _xs.end(), e) - _xs.begin();}// Return the compressed index of the maximum registered value less than `e`. if not exists, return -1.int max_lt_index(const T &e) const {return int(_xs.rend() - std::upper_bound(_xs.rbegin(), _xs.rend(), e, std::greater<T>())) - 1;}// Return the compressed index of the maximum registered value less than or equal to `e`. if not exists, return -1.int max_leq_index(const T &e) const {return int(_xs.rend() - std::lower_bound(_xs.rbegin(), _xs.rend(), e, std::greater<T>())) - 1;}private:std::vector<T> _xs;static bool is_strictly_sorted(const std::vector<T> &v) {return std::adjacent_find(v.begin(), v.end(), std::greater_equal<T>()) == v.end();}};CoordinateCompressorBuilder() : _xs(std::vector<T>{}) {}explicit CoordinateCompressorBuilder(const std::vector<T> &xs) : _xs(xs) {}explicit CoordinateCompressorBuilder(std::vector<T> &&xs) : _xs(std::move(xs)) {}template <typename Gen, constraints_t<std::is_invocable_r<T, Gen, int>> = nullptr>CoordinateCompressorBuilder(const int n, Gen generator) {reserve(n);for (int i = 0; i < n; ++i) push(generator(i));}// Attempt to preallocate enough memory for specified number of elements.void reserve(int n) {_xs.reserve(n);}// Add data.void push(const T &first) {_xs.push_back(first);}// Add data.void push(T &&first) {_xs.push_back(std::move(first));}// Add data in the range of [first, last).template <typename Iterator>auto push(const Iterator &first, const Iterator &last) -> decltype(std::vector<T>{}.push_back(*first), void()) {for (auto it = first; it != last; ++it) _xs.push_back(*it);}// Add all data in the container. Equivalent to `push(iterable.begin(), iterable.end())`.template <typename Iterable>auto push(const Iterable &iterable) -> decltype(std::vector<T>{}.push_back(*iterable.begin()), void()) {push(iterable.begin(), iterable.end());}// Add data.template <typename ...Args>void emplace(Args &&...args) {_xs.emplace_back(std::forward<Args>(args)...);}// Build compressor.auto build() {std::sort(_xs.begin(), _xs.end()), _xs.erase(std::unique(_xs.begin(), _xs.end()), _xs.end());return Compressor {_xs};}// Build compressor from vector.static auto build(const std::vector<T> &xs) {return CoordinateCompressorBuilder(xs).build();}// Build compressor from vector.static auto build(std::vector<T> &&xs) {return CoordinateCompressorBuilder(std::move(xs)).build();}// Build compressor from generator.template <typename Gen, constraints_t<std::is_invocable_r<T, Gen, int>> = nullptr>static auto build(const int n, Gen generator) {return CoordinateCompressorBuilder<T>(n, generator).build();}private:std::vector<T> _xs;};} // namespace suisen#include <atcoder/segtree>using S = int;S op(S x, S y) {return max(x, y);}S e() {return -1e9;}void solve() {int n;read(n);vector<int> a(n);read(a);UnweightedGraph g = [&] {std::vector<std::vector<int>> g(n);LOOP(n - 1) {int u, v;read(u, v);--u, --v;g[u].push_back(v);g[v].push_back(u);}return UnweightedGraph(g);}();vector<int> index(n);vector<int> comp_id(n);vector<int> dep(n);CentroidDecompositionUnweighted cd(g);vector<int> ans(n);for (int root = 0; root < n; ++root) {vector<pair<int, int>> vs;auto cmps = cd.collect(root);const int c = cmps.size();vector<int> start(c + 2);{int idx = 0;REP(i, c) {start[i] = idx;for (auto [v, d] : cmps[i]) {vs.emplace_back(a[v], v);index[v] = idx++;comp_id[v] = i;dep[v] = d;}}start[c] = idx;vs.emplace_back(a[root], root);index[root] = idx++;comp_id[root] = c;dep[root] = 0;start[c + 1] = idx;}const int siz = start.back();atcoder::segtree<int, op, e> seg(siz);sort(ALL(vs), greater<>());for (int l = 0; l < siz;) {int r = l;while (r < siz and vs[l].first == vs[r].first) {int v = vs[r++].second;seg.set(index[v], dep[v]);}for (int i = l; i < r; ++i) {int v = vs[i].second;int l = start[comp_id[v]];int r = start[comp_id[v] + 1];ans[v] = op(ans[v], dep[v] + op(seg.prod(0, l), seg.prod(r, siz)));}l = r;}}print(ans);}int main() {int test_case_num = 1;// read(test_case_num);LOOP(test_case_num) solve();return 0;}