結果

問題 No.2634 Tree Distance 3
ユーザー suisensuisen
提出日時 2024-02-16 23:15:10
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,805 ms / 3,000 ms
コード長 45,185 bytes
コンパイル時間 3,351 ms
コンパイル使用メモリ 250,400 KB
実行使用メモリ 47,760 KB
最終ジャッジ日時 2024-09-28 21:56:55
合計ジャッジ時間 68,314 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 69
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
namespace suisen {
template <class T> bool chmin(T& x, const T& y) { return y >= x ? false : (x = y, true); }
template <class T> bool chmax(T& x, const T& y) { return y <= x ? false : (x = y, true); }
template <class T> constexpr int pow_m1(T n) { return -(n & 1) | 1; }
template <class T> constexpr T fld(const T x, const T y) { T q = x / y, r = x % y; return q - ((x ^ y) < 0 and (r != 0)); }
template <class T> constexpr T cld(const T x, const T y) { T q = x / y, r = x % y; return q + ((x ^ y) > 0 and (r != 0)); }
}
namespace suisen::macro {
#define IMPL_REPITER(cond) auto& begin() { return *this; } auto end() { return nullptr; } auto& operator*() { return _val; } auto& operator++() {
    return _val += _step, *this; } bool operator!=(std::nullptr_t) { return cond; }
template <class Int, class IntL = Int, class IntStep = Int, std::enable_if_t<(std::is_signed_v<Int> == std::is_signed_v<IntL>), std::nullptr_t> =
        nullptr> struct rep_impl {
Int _val; const Int _end, _step;
rep_impl(Int n) : rep_impl(0, n) {}
rep_impl(IntL l, Int r, IntStep step = 1) : _val(l), _end(r), _step(step) {}
IMPL_REPITER((_val < _end))
};
template <class Int, class IntL = Int, class IntStep = Int, std::enable_if_t<(std::is_signed_v<Int> == std::is_signed_v<IntL>), std::nullptr_t> =
        nullptr> struct rrep_impl {
Int _val; const Int _end, _step;
rrep_impl(Int n) : rrep_impl(0, n) {}
rrep_impl(IntL l, Int r) : _val(r - 1), _end(l), _step(-1) {}
rrep_impl(IntL l, Int r, IntStep step) : _val(l + fld<Int>(r - l - 1, step) * step), _end(l), _step(-step) {}
IMPL_REPITER((_val >= _end))
};
template <class Int, class IntStep = Int> struct repinf_impl {
Int _val; const Int _step;
repinf_impl(Int l, IntStep step = 1) : _val(l), _step(step) {}
IMPL_REPITER((true))
};
#undef IMPL_REPITER
}
#include <iostream>
#include <limits>
#include <type_traits>
namespace suisen {
template <typename ...Constraints> using constraints_t = std::enable_if_t<std::conjunction_v<Constraints...>, std::nullptr_t>;
template <typename T, typename = std::nullptr_t> struct bitnum { static constexpr int value = 0; };
template <typename T> struct bitnum<T, constraints_t<std::is_integral<T>>> { static constexpr int value = std::numeric_limits<std
        ::make_unsigned_t<T>>::digits; };
template <typename T> static constexpr int bitnum_v = bitnum<T>::value;
template <typename T, size_t n> struct is_nbit { static constexpr bool value = bitnum_v<T> == n; };
template <typename T, size_t n> static constexpr bool is_nbit_v = is_nbit<T, n>::value;
template <typename T, typename = std::nullptr_t> struct safely_multipliable { using type = T; };
template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 32>>> { using type = long long; };
template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 64>>> { using type = __int128_t; };
template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 32>>> { using type = unsigned long long; };
template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 64>>> { using type = __uint128_t; };
template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type;
template <typename T, typename = void> struct rec_value_type { using type = T; };
template <typename T> struct rec_value_type<T, std::void_t<typename T::value_type>> {
using type = typename rec_value_type<typename T::value_type>::type;
};
template <typename T> using rec_value_type_t = typename rec_value_type<T>::type;
template <typename T> class is_iterable {
template <typename T_> static auto test(T_ e) -> decltype(e.begin(), e.end(), std::true_type{});
static std::false_type test(...);
public:
static constexpr bool value = decltype(test(std::declval<T>()))::value;
};
template <typename T> static constexpr bool is_iterable_v = is_iterable<T>::value;
template <typename T> class is_writable {
template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::ostream&>() << e, std::true_type{});
static std::false_type test(...);
public:
static constexpr bool value = decltype(test(std::declval<T>()))::value;
};
template <typename T> static constexpr bool is_writable_v = is_writable<T>::value;
template <typename T> class is_readable {
template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::istream&>() >> e, std::true_type{});
static std::false_type test(...);
public:
static constexpr bool value = decltype(test(std::declval<T>()))::value;
};
template <typename T> static constexpr bool is_readable_v = is_readable<T>::value;
} // namespace suisen
namespace suisen::io {
template <typename IStream, std::enable_if_t<std::conjunction_v<std::is_base_of<std::istream, std::remove_reference_t<IStream>>, std::negation
        <std::is_const<std::remove_reference_t<IStream>>>>, std::nullptr_t> = nullptr>
struct InputStream {
private:
using istream_type = std::remove_reference_t<IStream>;
IStream is;
struct { InputStream* is; template <typename T> operator T() { T e; *is >> e; return e; } } _reader{ this };
public:
template <typename IStream_> InputStream(IStream_ &&is) : is(std::move(is)) {}
template <typename IStream_> InputStream(IStream_ &is) : is(is) {}
template <typename T> InputStream& operator>>(T& e) {
if constexpr (suisen::is_readable_v<T>) is >> e; else _read(e);
return *this;
}
auto read() { return _reader; }
template <typename Head, typename... Tail>
void read(Head& head, Tail &...tails) { ((*this >> head) >> ... >> tails); }
istream_type& get_stream() { return is; }
private:
static __uint128_t _stou128(const std::string& s) {
__uint128_t ret = 0;
for (char c : s) if ('0' <= c and c <= '9') ret = 10 * ret + c - '0';
return ret;
}
static __int128_t _stoi128(const std::string& s) { return (s[0] == '-' ? -1 : +1) * _stou128(s); }
void _read(__uint128_t& v) { v = _stou128(std::string(_reader)); }
void _read(__int128_t& v) { v = _stoi128(std::string(_reader)); }
template <typename T, typename U>
void _read(std::pair<T, U>& a) { *this >> a.first >> a.second; }
template <size_t N = 0, typename ...Args>
void _read(std::tuple<Args...>& a) { if constexpr (N < sizeof...(Args)) *this >> std::get<N>(a), _read<N + 1>(a); }
template <typename Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr>
void _read(Iterable& a) { for (auto& e : a) *this >> e; }
};
template <typename IStream>
InputStream(IStream &&) -> InputStream<IStream>;
template <typename IStream>
InputStream(IStream &) -> InputStream<IStream&>;
InputStream cin{ std::cin };
auto read() { return cin.read(); }
template <typename Head, typename... Tail>
void read(Head& head, Tail &...tails) { cin.read(head, tails...); }
} // namespace suisen::io
namespace suisen { using io::read; } // namespace suisen
namespace suisen::io {
template <typename OStream, std::enable_if_t<std::conjunction_v<std::is_base_of<std::ostream, std::remove_reference_t<OStream>>, std::negation
        <std::is_const<std::remove_reference_t<OStream>>>>, std::nullptr_t> = nullptr>
struct OutputStream {
private:
using ostream_type = std::remove_reference_t<OStream>;
OStream os;
public:
template <typename OStream_> OutputStream(OStream_ &&os) : os(std::move(os)) {}
template <typename OStream_> OutputStream(OStream_ &os) : os(os) {}
template <typename T> OutputStream& operator<<(const T& e) {
if constexpr (suisen::is_writable_v<T>) os << e; else _print(e);
return *this;
}
void print() { *this << '\n'; }
template <typename Head, typename... Tail>
void print(const Head& head, const Tail &...tails) { *this << head, ((*this << ' ' << tails), ...), *this << '\n'; }
template <typename Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr>
void print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") {
for (auto it = v.begin(); it != v.end();) if (*this << *it; ++it != v.end()) *this << sep;
*this << end;
}
ostream_type& get_stream() { return os; }
private:
void _print(__uint128_t value) {
char buffer[41], *d = std::end(buffer);
do *--d = '0' + (value % 10), value /= 10; while (value);
os.rdbuf()->sputn(d, std::end(buffer) - d);
}
void _print(__int128_t value) {
if (value < 0) *this << '-';
_print(__uint128_t(value < 0 ? -value : value));
}
template <typename T, typename U>
void _print(const std::pair<T, U>& a) { *this << a.first << ' ' << a.second; }
template <size_t N = 0, typename ...Args>
void _print(const std::tuple<Args...>& a) {
if constexpr (N < std::tuple_size_v<std::tuple<Args...>>) {
if constexpr (N) *this << ' ';
*this << std::get<N>(a), _print<N + 1>(a);
}
}
template <typename Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr>
void _print(const Iterable& a) { print_all(a, " ", ""); }
};
template <typename OStream_>
OutputStream(OStream_ &&) -> OutputStream<OStream_>;
template <typename OStream_>
OutputStream(OStream_ &) -> OutputStream<OStream_&>;
OutputStream cout{ std::cout }, cerr{ std::cerr };
template <typename... Args>
void print(const Args &... args) { cout.print(args...); }
template <typename Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr>
void print_all(const Iterable& v, const std::string& sep = " ", const std::string& end = "\n") { cout.print_all(v, sep, end); }
} // namespace suisen::io
namespace suisen { using io::print, io::print_all; } // namespace suisen
namespace suisen {
template <class T, class ToKey, class CompKey = std::less<>, std::enable_if_t<std::conjunction_v<std::is_invocable<ToKey, T>, std::is_invocable_r
        <bool, CompKey, std::invoke_result_t<ToKey, T>, std::invoke_result_t<ToKey, T>>>, std::nullptr_t> = nullptr>
auto comparator(const ToKey& to_key, const CompKey& comp_key = std::less<>()) {
return [=](const T& x, const T& y) { return comp_key(to_key(x), to_key(y)); };
}
template <class Compare, std::enable_if_t<std::is_invocable_r_v<bool, Compare, int, int>, std::nullptr_t> = nullptr>
std::vector<int> sorted_indices(int n, const Compare& compare) {
std::vector<int> p(n);
return std::iota(p.begin(), p.end(), 0), std::sort(p.begin(), p.end(), compare), p;
}
template <class ToKey, std::enable_if_t<std::is_invocable_v<ToKey, int>, std::nullptr_t> = nullptr>
std::vector<int> sorted_indices(int n, const ToKey& to_key) { return sorted_indices(n, comparator<int>(to_key)); }
template <class T, class Comparator>
auto priority_queue_with_comparator(const Comparator& comparator) { return std::priority_queue<T, std::vector<T>, Comparator>{ comparator }; }
template <class Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr>
void sort_unique_erase(Iterable& a) { std::sort(a.begin(), a.end()), a.erase(std::unique(a.begin(), a.end()), a.end()); }
template <size_t D> struct Dim : std::array<int, D> {
template <typename ...Ints> Dim(const Ints& ...ns) : std::array<int, D>::array{ static_cast<int>(ns)... } {}
};
template <typename ...Ints> Dim(const Ints& ...) -> Dim<sizeof...(Ints)>;
template <class T, size_t D, size_t I = 0>
auto ndvec(const Dim<D> &ns, const T& value = {}) {
if constexpr (I + 1 < D) {
return std::vector(ns[I], ndvec<T, D, I + 1>(ns, value));
} else {
return std::vector<T>(ns[I], value);
}
}
}
namespace suisen {
using int128 = __int128_t;
using uint128 = __uint128_t;
template <class T> using min_priority_queue = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T> using max_priority_queue = std::priority_queue<T, std::vector<T>, std::less<T>>;
}
namespace suisen { const std::string Yes = "Yes", No = "No", YES = "YES", NO = "NO"; }
#ifdef LOCAL
# define debug(...) debug_impl(#__VA_ARGS__, __VA_ARGS__)
template <class H, class... Ts> void debug_impl(const char* s, const H& h, const Ts&... t) {
suisen::io::cerr << "[\033[32mDEBUG\033[m] " << s << ": " << h, ((suisen::io::cerr << ", " << t), ..., (suisen::io::cerr << "\n"));
}
#else
# define debug(...) void(0)
#endif
#define FOR(e, v) for (auto &&e : v)
#define CFOR(e, v) for (const auto &e : v)
#define REP(i, ...) CFOR(i, suisen::macro::rep_impl(__VA_ARGS__))
#define RREP(i, ...) CFOR(i, suisen::macro::rrep_impl(__VA_ARGS__))
#define REPINF(i, ...) CFOR(i, suisen::macro::repinf_impl(__VA_ARGS__))
#define LOOP(n) for ([[maybe_unused]] const auto& _ : suisen::macro::rep_impl(n))
#define ALL(iterable) std::begin(iterable), std::end(iterable)
using namespace suisen;
using namespace std;
struct io_setup {
io_setup(int precision = 20) {
std::ios::sync_with_stdio(false), std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(precision);
}
} io_setup_{};
constexpr int iinf = std::numeric_limits<int>::max() / 2;
constexpr long long linf = std::numeric_limits<long long>::max() / 2;
#include <deque>
#include <queue>
#include <tuple>
#include <vector>
#include <algorithm>
#include <cassert>
#include <optional>
#include <utility>
namespace suisen {
namespace internal::csr_graph { struct graph_base_tag {}; }
struct directed_graph_tag : internal::csr_graph::graph_base_tag {};
struct undirected_graph_tag : internal::csr_graph::graph_base_tag {};
template <typename T>
struct is_graph_tag { static constexpr bool value = std::is_base_of_v<internal::csr_graph::graph_base_tag, T>; };
template <typename T>
constexpr bool is_graph_tag_v = is_graph_tag<T>::value;
template <typename WeightType = void>
struct Graph {
template <typename GraphTag, typename, std::enable_if_t<is_graph_tag_v<GraphTag>, std::nullptr_t>>
friend struct GraphBuilder;
using weight_type = WeightType;
static constexpr bool weighted = std::negation_v<std::is_same<weight_type, void>>;
using weight_type_or_1 = std::conditional_t<weighted, weight_type, int>;
using input_edge_type = std::conditional_t<weighted, std::tuple<int, int, weight_type>, std::pair<int, int>>;
private:
using internal_edge_type = std::conditional_t<weighted, std::pair<int, weight_type>, int>;
struct Edge : public internal_edge_type {
using internal_edge_type::internal_edge_type;
operator int() const { return std::get<0>(*this); }
};
public:
using edge_type = std::conditional_t<weighted, Edge, int>;
private:
struct AdjacentList {
friend struct Graph;
using value_type = edge_type;
using iterator = typename std::vector<value_type>::iterator;
using const_iterator = typename std::vector<value_type>::const_iterator;
using reverse_iterator = typename std::vector<value_type>::reverse_iterator;
using const_reverse_iterator = typename std::vector<value_type>::const_reverse_iterator;
AdjacentList() = default;
int size() const { return _siz; }
bool empty() const { return _siz == 0; }
int capacity() const { return _cap; }
value_type& operator[](int i) { return *(begin() + i); }
const value_type& operator[](int i) const { return *(cbegin() + i); }
value_type& at(uint32_t i) { assert(i < _siz); return *(begin() + i); }
const value_type& at(uint32_t i) const { assert(i < _siz); return *(cbegin() + i); }
value_type* data() { return _g->_edges.data() + _offset; }
const value_type* data() const { return _g->_edges.data() + _offset; }
iterator begin() const { return _g->_edges.begin() + _offset; }
iterator end() const { return begin() + _siz; }
const_iterator cbegin() const { return _g->_edges.cbegin() + _offset; }
const_iterator cend() const { return cbegin() + _siz; }
reverse_iterator rbegin() const { return _g->_edges.rbegin() + (_g->_edges.size() - (_offset + _siz)); }
reverse_iterator rend() const { return rbegin() + _siz; }
const_reverse_iterator crbegin() const { return _g->_edges.crbegin() + (_g->_edges.size() - (_offset + _siz)); }
const_reverse_iterator crend() const { return crbegin() + _siz; }
void erase(const_iterator pos) {
erase(pos, std::next(pos));
}
void erase(const_iterator first, const_iterator last) {
const int num = last - first, k = first - cbegin();
assert(num >= 0);
if (num == 0) return;
assert(0 <= k and k <= _siz - num);
std::move(begin() + k + num, end(), begin() + k);
_siz -= num;
}
void pop_back() {
assert(_siz);
--_siz;
}
void clear() { _siz = 0; }
const value_type& back() const { return *--cend(); }
value_type& back() { return *--end(); }
const value_type& front() const { return *cbegin(); }
value_type& front() { return *begin(); }
void push_back(const value_type& x) {
++_siz;
assert(_siz <= _cap);
back() = x;
}
template <typename ...Args>
void emplace_back(Args &&...args) {
++_siz;
assert(_siz <= _cap);
back() = value_type(std::forward<Args>(args)...);
}
void insert(const_iterator pos, const value_type& x) {
emplace(pos, x);
}
void insert(const_iterator pos, int num, const value_type& x) {
const int k = pos - cbegin();
assert(0 <= k and k <= _siz);
std::fill(begin() + k, shift_back(begin() + k, num), x);
}
template <class RandomAccessIterator>
auto insert(const_iterator pos, RandomAccessIterator first, RandomAccessIterator last) -> decltype(*first++, last - first, void()) {
const int num = last - first, k = pos - cbegin();
assert(0 <= k and k <= _siz);
shift_back(begin() + k, num);
std::copy(first, last, begin() + k);
}
void insert(const_iterator pos, std::initializer_list<value_type> il) { insert(pos, il.begin(), il.end()); }
template <typename ...Args>
void emplace(const_iterator pos, Args &&...args) {
const int k = pos - cbegin();
assert(0 <= k and k <= _siz);
*--shift_back(begin() + k) = value_type(std::forward<Args>(args)...);
}
private:
mutable Graph* _g;
int _cap;
int _offset;
int _siz;
iterator shift_back(iterator pos, int num = 1) {
_siz += num;
assert(_siz <= _cap);
return std::move_backward(pos, end() - num, end());
}
};
public:
using adjacent_list = AdjacentList;
Graph() = default;
template <typename GraphTag, std::enable_if_t<is_graph_tag_v<GraphTag>, std::nullptr_t> = nullptr>
Graph(const int n, const std::vector<input_edge_type>& edges, GraphTag, std::vector<int> cap = {}) : _n(n), _adj(_n) {
static constexpr bool undirected = std::is_same_v<undirected_graph_tag, GraphTag>;
for (const auto& e : edges) {
const int u = std::get<0>(e);
++_adj[u]._siz;
if constexpr (undirected) {
const int v = std::get<1>(e);
++_adj[v]._siz;
}
}
if (cap.empty()) cap.resize(_n, std::numeric_limits<int>::max());
int edge_num = 0;
for (int i = 0; i < _n; ++i) {
_adj[i]._g = this;
_adj[i]._cap = std::min(_adj[i]._siz, cap[i]);
_adj[i]._offset = edge_num;
edge_num += _adj[i]._siz;
}
_edges.resize(edge_num);
std::vector<typename std::vector<edge_type>::iterator> ptr(_n);
for (int i = 0; i < _n; ++i) ptr[i] = _adj[i].begin();
for (const auto& e : edges) {
const int u = std::get<0>(e);
const int v = std::get<1>(e);
if constexpr (weighted) {
const weight_type& w = std::get<2>(e);
*ptr[u]++ = { v, w };
if constexpr (undirected) *ptr[v]++ = { u, w };
} else {
*ptr[u]++ = v;
if constexpr (undirected) *ptr[v]++ = u;
}
}
}
Graph(const std::vector<std::vector<edge_type>>& g) : Graph(g.size(), make_edges(g), directed_graph_tag{}) {}
static Graph create_directed_graph(const int n, const std::vector<input_edge_type>& edges, const std::vector<int>& cap = {}) {
return Graph(n, edges, directed_graph_tag{}, cap);
}
static Graph create_undirected_graph(const int n, const std::vector<input_edge_type>& edges, const std::vector<int>& cap = {}) {
return Graph(n, edges, undirected_graph_tag{}, cap);
}
adjacent_list& operator[](int i) {
_adj[i]._g = this;
return _adj[i];
}
const adjacent_list& operator[](int i) const {
_adj[i]._g = const_cast<Graph*>(this);
return _adj[i];
}
int size() const {
return _n;
}
void shrink_to_fit() {
int edge_num = 0;
for (const auto& l : _adj) edge_num += l.size();
std::vector<edge_type> new_edges(edge_num);
auto it = new_edges.begin();
for (int i = 0; i < _n; ++i) {
int nl = it - new_edges.begin();
it = std::move(_adj[i].begin(), _adj[i].end(), it);
_adj[i]._offset = nl;
_adj[i]._cap = _adj[i]._siz;
}
_edges.swap(new_edges);
}
static weight_type_or_1 get_weight(const edge_type& edge) {
if constexpr (weighted) return std::get<1>(edge);
else return 1;
}
Graph reversed(const std::vector<int>& cap = {}) const {
std::vector<input_edge_type> edges;
for (int i = 0; i < _n; ++i) {
for (const auto& edge : (*this)[i]) {
if constexpr (weighted) edges.emplace_back(std::get<0>(edge), i, std::get<1>(edge));
else edges.emplace_back(edge, i);
}
}
return Graph(_n, std::move(edges), directed_graph_tag{}, cap);
}
struct DFSTree {
std::vector<int> par;
std::vector<int> pre_ord, pst_ord;
Graph tree, back;
};
DFSTree dfs_tree(int start = 0) const {
std::vector<input_edge_type> tree_edge, back_edge;
std::vector<int> pre(_n), pst(_n);
auto pre_it = pre.begin(), pst_it = pst.begin();
std::vector<int> eid(_n, -1), par(_n, -2);
std::vector<std::optional<weight_type_or_1>> par_w(_n, std::nullopt);
for (int i = 0; i < _n; ++i) {
int cur = (start + i) % _n;
if (par[cur] != -2) continue;
par[cur] = -1;
while (cur >= 0) {
++eid[cur];
if (eid[cur] == 0) *pre_it++ = cur;
if (eid[cur] == _adj[cur].size()) {
*pst_it++ = cur;
cur = par[cur];
} else {
const auto &e = _adj[cur][eid[cur]];
weight_type_or_1 w = get_weight(e);
int nxt = e;
if (par[nxt] == -2) {
tree_edge.emplace_back(make_edge(cur, e));
par[nxt] = cur;
par_w[nxt] = std::move(w);
cur = nxt;
} else if (eid[nxt] != _adj[nxt].size()) {
if (par[cur] != nxt or par_w[cur] != w or not std::exchange(par_w[cur], std::nullopt).has_value()) {
back_edge.emplace_back(make_edge(cur, e));
}
}
}
}
}
Graph tree = create_directed_graph(_n, tree_edge);
Graph back = create_directed_graph(_n, back_edge);
return DFSTree{ std::move(par), std::move(pre), std::move(pst), std::move(tree), std::move(back) };
}
private:
int _n;
std::vector<adjacent_list> _adj;
std::vector<edge_type> _edges;
static std::vector<input_edge_type> make_edges(const std::vector<std::vector<edge_type>>& g) {
const int n = g.size();
std::vector<input_edge_type> edges;
for (int i = 0; i < n; ++i) for (const auto& e : g[i]) {
edges.emplace_back(make_edge(i, e));
}
return edges;
}
static input_edge_type make_edge(int i, const edge_type& e) {
if constexpr (weighted) return { i, std::get<0>(e), std::get<1>(e) };
else return { i, e };
}
};
template <typename GraphTag>
Graph(int, std::vector<std::pair<int, int>>, GraphTag, std::vector<int> = {})->Graph<void>;
template <typename WeightType, typename GraphTag>
Graph(int, std::vector<std::tuple<int, int, WeightType>>, GraphTag, std::vector<int> = {})->Graph<WeightType>;
Graph(std::vector<std::vector<int>>)->Graph<void>;
template <typename WeightType>
Graph(std::vector<std::vector<std::pair<int, WeightType>>>)->Graph<WeightType>;
template <typename GraphTag, typename WeightType = void,
std::enable_if_t<is_graph_tag_v<GraphTag>, std::nullptr_t> = nullptr>
struct GraphBuilder {
using graph_tag = GraphTag;
using weight_type = WeightType;
using edge_type = typename Graph<weight_type>::input_edge_type;
GraphBuilder(int n = 0) : _n(n) {}
void add_edge(const edge_type& edge) {
check_not_moved();
_edges.push_back(edge);
}
template <typename ...Args>
void emplace_edge(Args &&...args) {
check_not_moved();
_edges.emplace_back(std::forward<Args>(args)...);
}
template <typename EdgeContainer, std::enable_if_t<std::is_constructible_v<edge_type, typename EdgeContainer::value_type>, std::nullptr_t> =
            nullptr>
void add_edges(const EdgeContainer& edges) {
for (const auto& edge : edges) add_edge(edge);
}
template <bool move_edges = true>
Graph<weight_type> build() {
if constexpr (move_edges) {
_moved = true;
return Graph<weight_type>(_n, std::move(_edges), graph_tag{});
} else {
return Graph<weight_type>(_n, _edges, graph_tag{});
}
}
Graph<weight_type> build_without_move() {
return build<false>();
}
static Graph<weight_type> build(const int n, const std::vector<edge_type>& edges) {
GraphBuilder builder(n);
builder.add_edges(edges);
return builder.build();
}
private:
int _n;
std::vector<edge_type> _edges;
bool _moved = false;
void check_not_moved() {
if (not _moved) return;
std::cerr << "[\033[31mERROR\033[m] Edges are already moved. If you want to add edges after calling build() and build another graph, you
                should use build_without_move() instead." << std::endl;
assert(false);
}
};
template <typename WeightType = void>
using DirectedGraphBuilder = GraphBuilder<directed_graph_tag, WeightType>;
template <typename WeightType = void>
using UndirectedGraphBuilder = GraphBuilder<undirected_graph_tag, WeightType>;
template <typename Weight, std::enable_if_t<std::negation_v<std::is_same<Weight, void>>, std::nullptr_t> = nullptr>
using WeightedGraph = Graph<Weight>;
using UnweightedGraph = Graph<void>;
template <typename T>
struct is_weighted_graph { static constexpr bool value = false; };
template <typename WeightType>
struct is_weighted_graph<Graph<WeightType>> { static constexpr bool value = Graph<WeightType>::weighted; };
template <typename T>
constexpr bool is_weighted_graph_v = is_weighted_graph<T>::value;
template <typename T>
struct is_unweighted_graph { static constexpr bool value = false; };
template <typename WeightType>
struct is_unweighted_graph<Graph<WeightType>> { static constexpr bool value = not Graph<WeightType>::weighted; };
template <typename T>
constexpr bool is_unweighted_graph_v = is_unweighted_graph<T>::value;
} // namespace suisen
namespace suisen {
namespace internal {
template <typename WeightType = void>
struct CentroidDecomposition : Graph<WeightType> {
friend struct CentroidDecompositionUnweighted;
template <typename WeightType_, std::enable_if_t<not std::is_same_v<WeightType_, void>, std::nullptr_t>>
friend struct CentroidDecompositionWeighted;
using graph_type = Graph<WeightType>;
using weight_type = WeightType;
CentroidDecomposition(const graph_type& g) : graph_type(g), n(this->size()), cpar(n, -1), cdep(n, std::numeric_limits<int>::max()), csiz
                (n) {
build();
}
int dct_parent(int i) const { return cpar[i]; }
int dct_depth(int i) const { return cdep[i]; }
int dct_size(int i) const { return csiz[i]; }
private:
int n;
std::vector<int> cpar;
std::vector<int> cdep;
std::vector<int> csiz;
void build() {
std::vector<int> eid(n, 0);
cpar[0] = -1, csiz[0] = n;
std::deque<std::tuple<int, int>> dq{ { 0, 0 } };
while (dq.size()) {
const auto [r, dep] = dq.front();
const int siz = csiz[r], prev_ctr = cpar[r];
dq.pop_front();
int c = -1;
eid[r] = 0, csiz[r] = 1, cpar[r] = -1;
for (int cur = r;;) {
for (const int edge_num = int((*this)[cur].size());;) {
if (eid[cur] == edge_num) {
if (csiz[cur] * 2 > siz) {
c = cur;
} else {
const int nxt = cpar[cur];
csiz[nxt] += csiz[cur];
cur = nxt;
}
break;
}
const int nxt = (*this)[cur][eid[cur]++];
if (cdep[nxt] >= dep and nxt != cpar[cur]) {
eid[nxt] = 0, csiz[nxt] = 1, cpar[nxt] = cur;
cur = nxt;
break;
}
}
if (c >= 0) break;
}
for (int v : (*this)[c]) if (cdep[v] >= dep) {
if (cpar[c] == v) cpar[v] = c, csiz[v] = siz - csiz[c];
dq.emplace_back(v, dep + 1);
}
cpar[c] = prev_ctr, cdep[c] = dep, csiz[c] = siz;
}
}
};
struct CentroidDecompositionUnweighted : internal::CentroidDecomposition<void> {
using base_type = internal::CentroidDecomposition<void>;
using base_type::base_type;
std::vector<std::vector<std::pair<int, int>>> collect(int root, int root_val = 0) const {
std::vector<std::vector<std::pair<int, int>>> res{ { { root, root_val } } };
for (int sub_root : (*this)[root]) if (this->cdep[sub_root] > this->cdep[root]) {
res.emplace_back();
std::deque<std::tuple<int, int, int>> dq{ { sub_root, root, root_val + 1 } };
while (dq.size()) {
auto [u, p, w] = dq.front();
dq.pop_front();
res.back().emplace_back(u, w);
for (int v : (*this)[u]) if (v != p and this->cdep[v] > this->cdep[root]) {
dq.emplace_back(v, u, w + 1);
}
}
std::copy(res.back().begin(), res.back().end(), std::back_inserter(res.front()));
}
return res;
}
};
template <typename WeightType, std::enable_if_t<not std::is_same_v<WeightType, void>, std::nullptr_t> = nullptr>
struct CentroidDecompositionWeighted : internal::CentroidDecomposition<WeightType> {
using base_type = internal::CentroidDecomposition<WeightType>;
using base_type::base_type;
using weight_type = typename base_type::weight_type;
template <typename Op, std::enable_if_t<std::is_invocable_r_v<weight_type, Op, weight_type, weight_type>, std::nullptr_t> = nullptr>
std::vector<std::vector<std::pair<int, weight_type>>> collect(int root, Op op, weight_type root_val) const {
std::vector<std::vector<std::pair<int, weight_type>>> res{ { { root, root_val } } };
for (auto [sub_root, ew] : (*this)[root]) if (this->cdep[sub_root] > this->cdep[root]) {
res.emplace_back();
std::deque<std::tuple<int, int, weight_type>> dq{ { sub_root, root, op(root_val, ew) } };
while (dq.size()) {
auto [u, p, w] = dq.front();
dq.pop_front();
res.back().emplace_back(u, w);
for (auto [v, ew] : (*this)[u]) if (v != p and this->cdep[v] > this->cdep[root]) {
dq.emplace_back(v, u, op(w, ew));
}
}
std::copy(res.back().begin(), res.back().end(), std::back_inserter(res.front()));
}
return res;
}
};
}
using CentroidDecompositionUnweighted = internal::CentroidDecompositionUnweighted;
template <typename WeightType, std::enable_if_t<not std::is_same_v<WeightType, void>, std::nullptr_t> = nullptr>
using CentroidDecompositionWeighted = internal::CentroidDecompositionWeighted<WeightType>;
} // namespace suisen
namespace suisen {
template <typename T>
class CoordinateCompressorBuilder {
public:
struct Compressor {
public:
static constexpr int absent = -1;
// default constructor
Compressor() : _xs(std::vector<T>{}) {}
// Construct from strictly sorted vector
Compressor(const std::vector<T> &xs) : _xs(xs) {
assert(is_strictly_sorted(xs));
}
// Return the number of distinct keys.
int size() const {
return _xs.size();
}
// Check if the element is registered.
bool has_key(const T &e) const {
return std::binary_search(_xs.begin(), _xs.end(), e);
}
// Compress the element. if not registered, returns `default_value`. (default: Compressor::absent)
int comp(const T &e, int default_value = absent) const {
const int res = min_geq_index(e);
return res != size() and _xs[res] == e ? res : default_value;
}
// Restore the element from the index.
T decomp(const int compressed_index) const {
return _xs[compressed_index];
}
// Compress the element. Equivalent to call `comp(e)`
int operator[](const T &e) const {
return comp(e);
}
// Return the minimum registered value greater than `e`. if not exists, return `default_value`.
T min_gt(const T &e, const T &default_value) const {
auto it = std::upper_bound(_xs.begin(), _xs.end(), e);
return it == _xs.end() ? default_value : *it;
}
// Return the minimum registered value greater than or equal to `e`. if not exists, return `default_value`.
T min_geq(const T &e, const T &default_value) const {
auto it = std::lower_bound(_xs.begin(), _xs.end(), e);
return it == _xs.end() ? default_value : *it;
}
// Return the maximum registered value less than `e`. if not exists, return `default_value`
T max_lt(const T &e, const T &default_value) const {
auto it = std::upper_bound(_xs.rbegin(), _xs.rend(), e, std::greater<T>());
return it == _xs.rend() ? default_value : *it;
}
// Return the maximum registered value less than or equal to `e`. if not exists, return `default_value`
T max_leq(const T &e, const T &default_value) const {
auto it = std::lower_bound(_xs.rbegin(), _xs.rend(), e, std::greater<T>());
return it == _xs.rend() ? default_value : *it;
}
// Return the compressed index of the minimum registered value greater than `e`. if not exists, return `compressor.size()`.
int min_gt_index(const T &e) const {
return std::upper_bound(_xs.begin(), _xs.end(), e) - _xs.begin();
}
// Return the compressed index of the minimum registered value greater than or equal to `e`. if not exists, return `compressor.size
                    ()`.
int min_geq_index(const T &e) const {
return std::lower_bound(_xs.begin(), _xs.end(), e) - _xs.begin();
}
// Return the compressed index of the maximum registered value less than `e`. if not exists, return -1.
int max_lt_index(const T &e) const {
return int(_xs.rend() - std::upper_bound(_xs.rbegin(), _xs.rend(), e, std::greater<T>())) - 1;
}
// Return the compressed index of the maximum registered value less than or equal to `e`. if not exists, return -1.
int max_leq_index(const T &e) const {
return int(_xs.rend() - std::lower_bound(_xs.rbegin(), _xs.rend(), e, std::greater<T>())) - 1;
}
private:
std::vector<T> _xs;
static bool is_strictly_sorted(const std::vector<T> &v) {
return std::adjacent_find(v.begin(), v.end(), std::greater_equal<T>()) == v.end();
}
};
CoordinateCompressorBuilder() : _xs(std::vector<T>{}) {}
explicit CoordinateCompressorBuilder(const std::vector<T> &xs) : _xs(xs) {}
explicit CoordinateCompressorBuilder(std::vector<T> &&xs) : _xs(std::move(xs)) {}
template <typename Gen, constraints_t<std::is_invocable_r<T, Gen, int>> = nullptr>
CoordinateCompressorBuilder(const int n, Gen generator) {
reserve(n);
for (int i = 0; i < n; ++i) push(generator(i));
}
// Attempt to preallocate enough memory for specified number of elements.
void reserve(int n) {
_xs.reserve(n);
}
// Add data.
void push(const T &first) {
_xs.push_back(first);
}
// Add data.
void push(T &&first) {
_xs.push_back(std::move(first));
}
// Add data in the range of [first, last).
template <typename Iterator>
auto push(const Iterator &first, const Iterator &last) -> decltype(std::vector<T>{}.push_back(*first), void()) {
for (auto it = first; it != last; ++it) _xs.push_back(*it);
}
// Add all data in the container. Equivalent to `push(iterable.begin(), iterable.end())`.
template <typename Iterable>
auto push(const Iterable &iterable) -> decltype(std::vector<T>{}.push_back(*iterable.begin()), void()) {
push(iterable.begin(), iterable.end());
}
// Add data.
template <typename ...Args>
void emplace(Args &&...args) {
_xs.emplace_back(std::forward<Args>(args)...);
}
// Build compressor.
auto build() {
std::sort(_xs.begin(), _xs.end()), _xs.erase(std::unique(_xs.begin(), _xs.end()), _xs.end());
return Compressor {_xs};
}
// Build compressor from vector.
static auto build(const std::vector<T> &xs) {
return CoordinateCompressorBuilder(xs).build();
}
// Build compressor from vector.
static auto build(std::vector<T> &&xs) {
return CoordinateCompressorBuilder(std::move(xs)).build();
}
// Build compressor from generator.
template <typename Gen, constraints_t<std::is_invocable_r<T, Gen, int>> = nullptr>
static auto build(const int n, Gen generator) {
return CoordinateCompressorBuilder<T>(n, generator).build();
}
private:
std::vector<T> _xs;
};
} // namespace suisen
#include <atcoder/segtree>
using S = int;
S op(S x, S y) {
return max(x, y);
}
S e() {
return -1e9;
}
void solve() {
int n;
read(n);
vector<int> a(n);
read(a);
UnweightedGraph g = [&] {
std::vector<std::vector<int>> g(n);
LOOP(n - 1) {
int u, v;
read(u, v);
--u, --v;
g[u].push_back(v);
g[v].push_back(u);
}
return UnweightedGraph(g);
}();
vector<int> index(n);
vector<int> comp_id(n);
vector<int> dep(n);
CentroidDecompositionUnweighted cd(g);
vector<int> ans(n);
for (int root = 0; root < n; ++root) {
vector<pair<int, int>> vs;
auto cmps = cd.collect(root);
const int c = cmps.size();
vector<int> start(c + 2);
{
int idx = 0;
REP(i, c) {
start[i] = idx;
for (auto [v, d] : cmps[i]) {
vs.emplace_back(a[v], v);
index[v] = idx++;
comp_id[v] = i;
dep[v] = d;
}
}
start[c] = idx;
vs.emplace_back(a[root], root);
index[root] = idx++;
comp_id[root] = c;
dep[root] = 0;
start[c + 1] = idx;
}
const int siz = start.back();
atcoder::segtree<int, op, e> seg(siz);
sort(ALL(vs), greater<>());
for (int l = 0; l < siz;) {
int r = l;
while (r < siz and vs[l].first == vs[r].first) {
int v = vs[r++].second;
seg.set(index[v], dep[v]);
}
for (int i = l; i < r; ++i) {
int v = vs[i].second;
int l = start[comp_id[v]];
int r = start[comp_id[v] + 1];
ans[v] = op(ans[v], dep[v] + op(seg.prod(0, l), seg.prod(r, siz)));
}
l = r;
}
}
print(ans);
}
int main() {
int test_case_num = 1;
// read(test_case_num);
LOOP(test_case_num) solve();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0