結果
問題 | No.2633 Subsequence Combination Score |
ユーザー | ゆにぽけ |
提出日時 | 2024-02-17 00:07:47 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 252 ms / 2,000 ms |
コード長 | 15,328 bytes |
コンパイル時間 | 1,993 ms |
コンパイル使用メモリ | 152,848 KB |
実行使用メモリ | 8,608 KB |
最終ジャッジ日時 | 2024-09-28 23:10:39 |
合計ジャッジ時間 | 11,237 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 37 ms
6,820 KB |
testcase_03 | AC | 192 ms
7,436 KB |
testcase_04 | AC | 176 ms
7,336 KB |
testcase_05 | AC | 176 ms
7,648 KB |
testcase_06 | AC | 190 ms
7,312 KB |
testcase_07 | AC | 181 ms
7,636 KB |
testcase_08 | AC | 34 ms
6,816 KB |
testcase_09 | AC | 252 ms
8,232 KB |
testcase_10 | AC | 246 ms
8,076 KB |
testcase_11 | AC | 247 ms
8,112 KB |
testcase_12 | AC | 247 ms
8,180 KB |
testcase_13 | AC | 248 ms
8,128 KB |
testcase_14 | AC | 247 ms
8,216 KB |
testcase_15 | AC | 247 ms
8,168 KB |
testcase_16 | AC | 247 ms
8,064 KB |
testcase_17 | AC | 248 ms
7,972 KB |
testcase_18 | AC | 245 ms
8,088 KB |
testcase_19 | AC | 242 ms
8,432 KB |
testcase_20 | AC | 238 ms
8,472 KB |
testcase_21 | AC | 244 ms
8,372 KB |
testcase_22 | AC | 241 ms
8,608 KB |
testcase_23 | AC | 236 ms
8,284 KB |
testcase_24 | AC | 243 ms
8,252 KB |
testcase_25 | AC | 248 ms
8,380 KB |
testcase_26 | AC | 242 ms
8,280 KB |
testcase_27 | AC | 227 ms
8,096 KB |
testcase_28 | AC | 232 ms
8,256 KB |
testcase_29 | AC | 2 ms
6,820 KB |
testcase_30 | AC | 3 ms
6,820 KB |
testcase_31 | AC | 3 ms
6,820 KB |
testcase_32 | AC | 3 ms
6,816 KB |
testcase_33 | AC | 248 ms
7,948 KB |
testcase_34 | AC | 247 ms
7,948 KB |
testcase_35 | AC | 248 ms
8,080 KB |
testcase_36 | AC | 246 ms
7,976 KB |
testcase_37 | AC | 247 ms
7,992 KB |
testcase_38 | AC | 247 ms
8,044 KB |
testcase_39 | AC | 246 ms
8,016 KB |
testcase_40 | AC | 247 ms
8,100 KB |
ソースコード
#include <iostream> #include <vector> #include <algorithm> #include <array> #include <iterator> #include <string> #include <cctype> #include <cstring> #include <cstdlib> #include <cassert> #include <cmath> #include <ctime> #include <iomanip> #include <numeric> #include <stack> #include <queue> #include <map> #include <unordered_map> #include <set> #include <unordered_set> #include <bitset> #include <random> #include <utility> #include <functional> using namespace std; template<class T> inline bool chmin(T &a,const T &b) { if(a > b) { a = b; return true; } return false; } template<class T> inline bool chmax(T &a,const T &b) { if(a < b) { a = b; return true; } return false; } template<class T> void print(const vector<T> &V) { for(int i = 0;i < (int)V.size();i++) { cerr << V[i] << (i + 1 == (int)V.size() ? "\n":" "); } } #include <iostream> #include <vector> #include <algorithm> #include <cstdlib> #include <cassert> #include <cmath> using namespace std; namespace geometry { using real = long double; const real EPS = 1e-9; bool EQ(real a,real b) { return abs(a - b) < EPS; } struct Point { real x,y; Point(real x_ = 0,real y_ = 0) : x(x_),y(y_) {} Point operator-() const { return Point(-x,-y); } Point operator+(const Point &rhs) const { return Point(x + rhs.x,y + rhs.y); } Point operator-(const Point &rhs) const { return Point(x - rhs.x,y - rhs.y); } Point operator*(const real k) const { return Point(x * k,y * k); } Point operator/(const real k) const { assert(!EQ(0,k)); return Point(x / k,y / k); } bool operator<(const Point &rhs) const { return EQ(x,rhs.x) ? y < rhs.y : x < rhs.x; } bool operator==(const Point &rhs) const { return EQ(x,rhs.x) && EQ(y,rhs.y); } }; istream &operator>>(istream &is,Point &p) { return is >> p.x >> p.y; } ostream &operator<<(ostream &os,const Point &p) { return os << p.x << " " << p.y; } struct Line { Point p1,p2; Line(Point p1_ = Point(),Point p2_ = Point()) : p1(p1_),p2(p2_) {} }; struct Segment : Line { Segment(Point p1_ = Point(),Point p2_ = Point()) : Line(p1_,p2_) {} }; struct Circle { Point O; real r; Circle(Point O_ = Point(),real r_ = 0) : O(O_),r(r_) {} }; using Polygon = vector<Point>; Point vec(const Line &l) { return l.p2 - l.p1; } real norm2(const Point &p) { return p.x * p.x + p.y * p.y; } real abs(const Point &p) { return hypot(p.x,p.y); } real dot(const Point &a,const Point &b) { return a.x * b.x + a.y * b.y; } real cross(const Point &a,const Point &b) { return a.x * b.y - a.y * b.x; } Point rotate(const Point &p,const real &theta) { return Point(p.x * cos(theta) - p.y * sin(theta), p.x * sin(theta) + p.y * cos(theta)); } Point rotate(const Point &a,const Point &p,const real &theta) { Point q = rotate(p - a,theta); return a + q; } enum { ONLINE_FRONT = -2, CLOCKWISE= -1, ON_SEGMENT = 0, COUNTER_CLOCKWISE = 1, ONLINE_BACK = 2 }; int ccw(const Point &a,const Point &b) { real C = cross(a,b); return C > EPS ? COUNTER_CLOCKWISE : C < -EPS ? CLOCKWISE : dot(a,b) < -EPS ? ONLINE_BACK : norm2(b) - norm2(a) > EPS ? ONLINE_FRONT : ON_SEGMENT; } int ccw(const Point &a,const Point &b,const Point &c) { return ccw(b - a,c - a); } bool orthogonal(const Point &a,const Point &b) { return EQ(dot(a,b),0); } bool orthogonal(const Line &a,const Line &b) { return orthogonal(vec(a),vec(b)); } bool parallel(const Point &a,const Point &b) { return EQ(cross(a,b),0); } bool parallel(const Line &a,const Line &b) { return parallel(vec(a),vec(b)); } bool intersect(const Line &l,const Point &p) { return parallel(vec(l),p - l.p1); } bool intersect(const Segment &s,const Point &p) { return ccw(s.p1,s.p2,p) == ON_SEGMENT; } bool intersect(const Segment &a,const Segment &b) { return ccw(a.p1,a.p2,b.p1) * ccw(a.p1,a.p2,b.p2) <= 0 && ccw(b.p1,b.p2,a.p1) * ccw(b.p1,b.p2,a.p2) <= 0; } Point cross_point(const Line &a,const Line &b) { real s1 = cross(vec(a),b.p1 - a.p1); real s2 = -cross(vec(a),b.p2 - a.p1); return b.p1 + vec(b) * (s1 / (s1 + s2)); } Point crossPoint(const Line &s, const Line &t) { real d1 = cross(s.p2 - s.p1, t.p2 - t.p1); real d2 = cross(s.p2 - s.p1, s.p2 - t.p1); if(EQ(abs(d1), 0) && EQ(abs(d2), 0)) { return t.p1; } return t.p1 + (t.p2 - t.p1) * (d2 / d1); } enum { OUT, ON, IN }; Polygon convex_hull(Polygon P,bool ONLINE = false,bool SORT = false) { if((int)P.size() <= 2) { return P; } sort(P.begin(),P.end()); Polygon res(2 * P.size()); int sz = 0; real threshold = EPS; if(ONLINE) { threshold = -EPS; } for(int i = 0;i < (int)P.size();i++) { while(sz >= 2 && cross(res[sz - 1] - res[sz - 2],P[i] - res[sz - 1]) < threshold) { sz--; } res[sz++] = P[i]; } for(int i = (int)P.size() - 2,t = sz + 1;i >= 0;i--) { while(sz >= t && cross(res[sz - 1] - res[sz - 2],P[i] - res[sz - 1]) < threshold) { sz--; } res[sz++] = P[i]; } res.resize(sz - 1); if(SORT) { int mi = 0; for(int i = 1;i < (int)res.size();i++) { if((EQ(res[mi].y,res[i].y) && res[mi].x > res[i].x) || res[mi].y > res[i].y) { mi = i; } } rotate(res.begin(),res.begin() + mi,res.end()); } return res; } int convex_contain(const Polygon &P,const Point &p) { if(P[0] == p) { return ON; } int L = 0,R = (int)P.size(); while(R - L > 1) { int M = (L + R) / 2; if(ccw(P[0],P[M],p) == CLOCKWISE) { R = M; } else { L = M; } } if(R == 1) { return OUT; } if(L + 1 == (int)P.size()) { if(intersect(Segment(P[0],P[L]),p)) { return ON; } return OUT; } if(L == 1) { if(intersect(Segment(P[0],P[L]),p)) { return ON; } } real tri = cross(P[L] - p,P[R] - p); return EQ(tri,0) ? ON : tri < -EPS ? OUT : IN; } }; //namespace geometry #include<algorithm> #include<vector> #include<cassert> using namespace std; struct UnionFind { private: int n; vector<int> par,siz; public: UnionFind(int n) :n(n),par(n,-1),siz(n,1) {} int root(int u) { assert(0 <= u && u < n); return (par[u] < 0 ? u:par[u] = root(par[u])); } bool same(int u,int v) { assert(0 <= u && u < n && 0 <= v && v < n); return root(u) == root(v); } bool unite(int u,int v) { assert(0 <= u && u < n && 0 <= v && v < n); u = root(u),v = root(v); if(u == v) return false; if(siz[u] < siz[v]) swap(u,v); siz[u] += siz[v]; par[v] = u; return true; } int size(int u) { assert(0 <= u && u < n); return siz[root(u)]; } vector<vector<int>> components() { vector<vector<int>> ret(n); for(int u = 0;u < n;u++) ret[root(u)].push_back(u); ret.erase(remove_if(ret.begin(),ret.end(),[](vector<int> v) { return v.empty();}),ret.end()); return ret; } }; template<int m> struct modint { private: unsigned int value; static constexpr int mod() {return m;} public: constexpr modint(const long long x = 0) noexcept { long long y = x; if(y < 0 || y >= mod()) { y %= mod(); if(y < 0) y += mod(); } value = (unsigned int)y; } static constexpr int get_mod() noexcept {return m;} static constexpr int primitive_root() noexcept { assert(m == 998244353); return 3; } constexpr unsigned int val() noexcept {return value;} constexpr modint &operator+=(const modint &other) noexcept { value += other.value; if(value >= mod()) value -= mod(); return *this; } constexpr modint &operator-=(const modint &other) noexcept { unsigned int x = value; if(x < other.value) x += mod(); x -= other.value; value = x; return *this; } constexpr modint &operator*=(const modint &other) noexcept { unsigned long long x = value; x *= other.value; value = (unsigned int) (x % mod()); return *this; } constexpr modint &operator/=(const modint &other) noexcept { return *this *= other.inverse(); } constexpr modint inverse() const noexcept { assert(value); long long a = value,b = mod(),x = 1,y = 0; while(b) { long long q = a/b; a -= q*b; swap(a,b); x -= q*y; swap(x,y); } return modint(x); } constexpr modint power(long long N) const noexcept { assert(N >= 0); modint p = *this,ret = 1; while(N) { if(N & 1) ret *= p; p *= p; N >>= 1; } return ret; } constexpr modint operator+() {return *this;} constexpr modint operator-() {return modint() - *this;} constexpr modint &operator++(int) noexcept {return *this += 1;} constexpr modint &operator--(int) noexcept {return *this -= 1;} friend modint operator+(const modint& lhs, const modint& rhs) {return modint(lhs) += rhs;} friend modint operator-(const modint& lhs, const modint& rhs) {return modint(lhs) -= rhs;} friend modint operator*(const modint& lhs, const modint& rhs) {return modint(lhs) *= rhs;} friend modint operator/(const modint& lhs, const modint& rhs) {return modint(lhs) /= rhs;} friend ostream &operator<<(ostream &os,const modint &x) {return os << x.value;} }; using mint = modint<998244353>; /* using mint = modint<1000000007>; */ template<class S> struct combination { private: vector<S> f,invf; public: combination(int N = 0) : f(1,1),invf(1,1) { update(N); } void update(int N) { if((int)f.size() > N) return; int pi = (int)f.size(); N = max(N,pi*2); f.resize(N+1),invf.resize(N+1); for(int i = pi;i <= N;i++) f[i] = f[i-1]*i; invf[N] = S(1)/f[N]; for(int i = N-1;i >= pi;i--) invf[i] = invf[i+1]*(i+1); } S factorial(int N) { update(N); return f[N]; } S invfactorial(int N) { update(N); return invf[N]; } S P(int N,int K) { assert(0 <= K && K <= N); update(N); return f[N]*invf[N-K]; } S C(int N,int K) { assert(0 <= K && K <= N); update(N); return f[N]*invf[K]*invf[N-K]; } }; combination<mint> C; int ceil_log2(int n) { int res = 0; while((1U << res) < (unsigned int)n) { res++; } return res; } template<class mint> void Butterfly(vector<mint> &a,bool inverse = false) { int N = (int)a.size(); int H = __builtin_ctz(N); assert(N == (1 << H)); static constexpr int pr = mint::primitive_root(); static bool first_call = true; static vector<mint> w(30),iw(30); if(first_call) { first_call = false; int cnt = __builtin_ctz(mint::get_mod() - 1); mint e = mint(pr).power((mint::get_mod() - 1) >> cnt); mint ie = e.inverse(); for(int i = cnt;i >= 1;i--) { w[i] = e; iw[i] = ie; e *= e; ie *= ie; } } if(!inverse) { int width = N; int log = H; const mint im = w[2]; while(width > 1) { mint cur = w[log]; if(width == 2) { int offset = width >> 1; for(int i = 0;i < N;i += width) { mint root = 1; for(int j = i;j < i + offset;j++) { mint s = a[j],t = a[j + offset]; a[j] = s + t; a[j + offset] = (s - t) * root; root *= cur; } } width >>= 1; log--; } else { int offset = width >> 2; for(int i = 0;i < N;i += width) { mint root = 1; for(int j = i;j < i + offset;j++) { mint root2 = root * root; mint root3 = root2 * root; mint s = a[j],t = a[j + offset],u = a[j + offset * 2],v = a[j + offset * 3]; mint spu = s + u; mint smu = s - u; mint tpv = t + v; mint tmvim = (t - v) * im; a[j] = spu + tpv; a[j + offset] = (spu - tpv) * root2; a[j + offset * 2] = (smu + tmvim) * root; a[j + offset * 3] = (smu - tmvim) * root3; root *= cur; } } width >>= 2; log -= 2; } } } else { int width = H & 1 ? 2 : 4; int log = H & 1 ? 1 : 2; const mint im = iw[2]; while(width <= N) { mint cur = iw[log]; if(width == 2) { int offset = width >> 1; for(int i = 0;i < N;i += width) { mint root = 1; for(int j = i;j < i + offset;j++) { mint s = a[j],t = a[j + offset] * root; a[j] = s + t; a[j + offset] = s - t; root *= cur; } } } else { int offset = width >> 2; for(int i = 0;i < N;i += width) { mint root = 1; for(int j = i;j < i + offset;j++) { mint root2 = root * root; mint root3 = root2 * root; mint s = a[j],t = a[j + offset] * root2,u = a[j + offset * 2] * root,v = a[j + offset * 3] * root3; mint spt = s + t; mint smt = s - t; mint upv = u + v; mint umvim = (u - v) * im; a[j] = spt + upv; a[j + offset] = smt + umvim; a[j + offset * 2] = spt - upv; a[j + offset * 3] = smt - umvim; root *= cur; } } } width <<= 2; log += 2; } } } template<class mint> vector<mint> Convolution(vector<mint> a,vector<mint> b) { int N = (int)a.size(),M = (int)b.size(); if(min(N,M) <= 60) { vector<mint> res(N + M - 1); if(N < M) { swap(N,M); swap(a,b); } for(int i = 0;i < N;i++) { for(int j = 0;j < M;j++) { res[i + j] += a[i] * b[j]; } } return res; } int L = 1 << ceil_log2(N + M - 1); a.resize(L); b.resize(L); Butterfly(a); Butterfly(b); for(int i = 0;i < L;i++) { a[i] *= b[i]; } Butterfly(a,true); a.resize(N + M - 1); const mint invL = mint(L).inverse(); for(int i = 0;i < N + M - 1;i++) { a[i] *= invL; } return a; } void Main() { int N; cin >> N; vector<int> A(N); for(int i = 0;i < N;i++) { cin >> A[i]; } vector<mint> dp(N); mint ans = 0; auto dfs = [&](auto dfs,int l,int r) -> void { if(l + 1 == r) { dp[l] += C.factorial(A[l]); ans += dp[l] * C.invfactorial(A[l]); return; } int mid = (l + r) / 2; dfs(dfs,l,mid); vector<mint> P(A[l] - A[mid - 1] + 1),Q(A[l] - A[r - 1] + 1); for(int i = l;i < mid;i++) { P[A[l] - A[i]] += dp[i]; } for(int i = 0;i < (int)Q.size();i++) { Q[i] = C.invfactorial(i); } P = Convolution(P,Q); for(int i = mid;i < r;i++) { dp[i] += P[A[l] - A[i]]; } dfs(dfs,mid,r); }; dfs(dfs,0,N); cout << ans << "\n"; /* vector<mint> dp(N); */ /* mint ans = 0; */ /* for(int i = N - 1;i >= 0;i--) */ /* { */ /* for(int j = i + 1;j < N;j++) */ /* { */ /* dp[i] += dp[j] * C.C(A[i],A[j]); */ /* } */ /* dp[i]++; */ /* ans += dp[i]; */ /* cout << dp[i] << (i ? " ":"\n"); */ /* } */ /* cout << ans << "\n"; */ /* const int M = (int)1e5; */ /* for(int i = 0;i < N;i++) */ /* { */ /* vector<mint> dp(M + 1); */ /* dp[A[i]] += C.factorial(A[i]); */ /* for(int j = i + 1;j < N;j++) */ /* { */ /* for(int k = A[j];k <= M;k++) */ /* { */ /* dp[A[j]] += dp[k] * C.invfactorial(k - A[j]); */ /* } */ /* } */ /* mint ans = 0; */ /* for(int j = 0;j <= M;j++) */ /* { */ /* ans += dp[j] * C.invfactorial(j); */ /* } */ /* cout << ans << (i + 1 == N ? "\n":" "); */ /* } */ /* vector<mint> dp(M + 1); */ /* for(int i = 0;i < N;i++) */ /* { */ /* for(int j = A[i];j <= M;j++) */ /* { */ /* dp[A[i]] += dp[j] * C.invfactorial(j - A[i]); */ /* } */ /* dp[A[i]] += C.factorial(A[i]); */ /* } */ /* mint ans = 0; */ /* for(int i = 0;i <= M;i++) */ /* { */ /* ans += dp[i] * C.invfactorial(i); */ /* } */ /* cout << ans << "\n"; */ } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int tt = 1; /* cin >> tt; */ while(tt--) Main(); }