結果
| 問題 |
No.2633 Subsequence Combination Score
|
| コンテスト | |
| ユーザー |
ゆにぽけ
|
| 提出日時 | 2024-02-17 00:07:47 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 509 ms / 2,000 ms |
| コード長 | 15,328 bytes |
| コンパイル時間 | 1,920 ms |
| コンパイル使用メモリ | 147,932 KB |
| 最終ジャッジ日時 | 2025-02-19 15:11:10 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 38 |
ソースコード
#include <iostream>
#include <vector>
#include <algorithm>
#include <array>
#include <iterator>
#include <string>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <cassert>
#include <cmath>
#include <ctime>
#include <iomanip>
#include <numeric>
#include <stack>
#include <queue>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <bitset>
#include <random>
#include <utility>
#include <functional>
using namespace std;
template<class T>
inline bool chmin(T &a,const T &b)
{
if(a > b)
{
a = b;
return true;
}
return false;
}
template<class T>
inline bool chmax(T &a,const T &b)
{
if(a < b)
{
a = b;
return true;
}
return false;
}
template<class T>
void print(const vector<T> &V)
{
for(int i = 0;i < (int)V.size();i++)
{
cerr << V[i] << (i + 1 == (int)V.size() ? "\n":" ");
}
}
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstdlib>
#include <cassert>
#include <cmath>
using namespace std;
namespace geometry
{
using real = long double;
const real EPS = 1e-9;
bool EQ(real a,real b)
{
return abs(a - b) < EPS;
}
struct Point
{
real x,y;
Point(real x_ = 0,real y_ = 0) : x(x_),y(y_) {}
Point operator-() const
{
return Point(-x,-y);
}
Point operator+(const Point &rhs) const
{
return Point(x + rhs.x,y + rhs.y);
}
Point operator-(const Point &rhs) const
{
return Point(x - rhs.x,y - rhs.y);
}
Point operator*(const real k) const
{
return Point(x * k,y * k);
}
Point operator/(const real k) const
{
assert(!EQ(0,k));
return Point(x / k,y / k);
}
bool operator<(const Point &rhs) const
{
return EQ(x,rhs.x) ? y < rhs.y : x < rhs.x;
}
bool operator==(const Point &rhs) const
{
return EQ(x,rhs.x) && EQ(y,rhs.y);
}
};
istream &operator>>(istream &is,Point &p)
{
return is >> p.x >> p.y;
}
ostream &operator<<(ostream &os,const Point &p)
{
return os << p.x << " " << p.y;
}
struct Line
{
Point p1,p2;
Line(Point p1_ = Point(),Point p2_ = Point()) : p1(p1_),p2(p2_) {}
};
struct Segment : Line
{
Segment(Point p1_ = Point(),Point p2_ = Point()) : Line(p1_,p2_) {}
};
struct Circle
{
Point O;
real r;
Circle(Point O_ = Point(),real r_ = 0) : O(O_),r(r_) {}
};
using Polygon = vector<Point>;
Point vec(const Line &l)
{
return l.p2 - l.p1;
}
real norm2(const Point &p)
{
return p.x * p.x + p.y * p.y;
}
real abs(const Point &p)
{
return hypot(p.x,p.y);
}
real dot(const Point &a,const Point &b)
{
return a.x * b.x + a.y * b.y;
}
real cross(const Point &a,const Point &b)
{
return a.x * b.y - a.y * b.x;
}
Point rotate(const Point &p,const real &theta)
{
return Point(p.x * cos(theta) - p.y * sin(theta), p.x * sin(theta) + p.y * cos(theta));
}
Point rotate(const Point &a,const Point &p,const real &theta)
{
Point q = rotate(p - a,theta);
return a + q;
}
enum
{
ONLINE_FRONT = -2,
CLOCKWISE= -1,
ON_SEGMENT = 0,
COUNTER_CLOCKWISE = 1,
ONLINE_BACK = 2
};
int ccw(const Point &a,const Point &b)
{
real C = cross(a,b);
return C > EPS ? COUNTER_CLOCKWISE : C < -EPS ? CLOCKWISE : dot(a,b) < -EPS ? ONLINE_BACK : norm2(b) - norm2(a) > EPS ? ONLINE_FRONT : ON_SEGMENT;
}
int ccw(const Point &a,const Point &b,const Point &c)
{
return ccw(b - a,c - a);
}
bool orthogonal(const Point &a,const Point &b)
{
return EQ(dot(a,b),0);
}
bool orthogonal(const Line &a,const Line &b)
{
return orthogonal(vec(a),vec(b));
}
bool parallel(const Point &a,const Point &b)
{
return EQ(cross(a,b),0);
}
bool parallel(const Line &a,const Line &b)
{
return parallel(vec(a),vec(b));
}
bool intersect(const Line &l,const Point &p)
{
return parallel(vec(l),p - l.p1);
}
bool intersect(const Segment &s,const Point &p)
{
return ccw(s.p1,s.p2,p) == ON_SEGMENT;
}
bool intersect(const Segment &a,const Segment &b)
{
return ccw(a.p1,a.p2,b.p1) * ccw(a.p1,a.p2,b.p2) <= 0 && ccw(b.p1,b.p2,a.p1) * ccw(b.p1,b.p2,a.p2) <= 0;
}
Point cross_point(const Line &a,const Line &b)
{
real s1 = cross(vec(a),b.p1 - a.p1);
real s2 = -cross(vec(a),b.p2 - a.p1);
return b.p1 + vec(b) * (s1 / (s1 + s2));
}
Point crossPoint(const Line &s, const Line &t) {
real d1 = cross(s.p2 - s.p1, t.p2 - t.p1);
real d2 = cross(s.p2 - s.p1, s.p2 - t.p1);
if(EQ(abs(d1), 0) && EQ(abs(d2), 0)) {
return t.p1;
}
return t.p1 + (t.p2 - t.p1) * (d2 / d1);
}
enum
{
OUT,
ON,
IN
};
Polygon convex_hull(Polygon P,bool ONLINE = false,bool SORT = false)
{
if((int)P.size() <= 2)
{
return P;
}
sort(P.begin(),P.end());
Polygon res(2 * P.size());
int sz = 0;
real threshold = EPS;
if(ONLINE)
{
threshold = -EPS;
}
for(int i = 0;i < (int)P.size();i++)
{
while(sz >= 2 && cross(res[sz - 1] - res[sz - 2],P[i] - res[sz - 1]) < threshold)
{
sz--;
}
res[sz++] = P[i];
}
for(int i = (int)P.size() - 2,t = sz + 1;i >= 0;i--)
{
while(sz >= t && cross(res[sz - 1] - res[sz - 2],P[i] - res[sz - 1]) < threshold)
{
sz--;
}
res[sz++] = P[i];
}
res.resize(sz - 1);
if(SORT)
{
int mi = 0;
for(int i = 1;i < (int)res.size();i++)
{
if((EQ(res[mi].y,res[i].y) && res[mi].x > res[i].x) || res[mi].y > res[i].y)
{
mi = i;
}
}
rotate(res.begin(),res.begin() + mi,res.end());
}
return res;
}
int convex_contain(const Polygon &P,const Point &p)
{
if(P[0] == p)
{
return ON;
}
int L = 0,R = (int)P.size();
while(R - L > 1)
{
int M = (L + R) / 2;
if(ccw(P[0],P[M],p) == CLOCKWISE)
{
R = M;
}
else
{
L = M;
}
}
if(R == 1)
{
return OUT;
}
if(L + 1 == (int)P.size())
{
if(intersect(Segment(P[0],P[L]),p))
{
return ON;
}
return OUT;
}
if(L == 1)
{
if(intersect(Segment(P[0],P[L]),p))
{
return ON;
}
}
real tri = cross(P[L] - p,P[R] - p);
return EQ(tri,0) ? ON : tri < -EPS ? OUT : IN;
}
}; //namespace geometry
#include<algorithm>
#include<vector>
#include<cassert>
using namespace std;
struct UnionFind
{
private:
int n;
vector<int> par,siz;
public:
UnionFind(int n) :n(n),par(n,-1),siz(n,1) {}
int root(int u)
{
assert(0 <= u && u < n);
return (par[u] < 0 ? u:par[u] = root(par[u]));
}
bool same(int u,int v)
{
assert(0 <= u && u < n && 0 <= v && v < n);
return root(u) == root(v);
}
bool unite(int u,int v)
{
assert(0 <= u && u < n && 0 <= v && v < n);
u = root(u),v = root(v);
if(u == v) return false;
if(siz[u] < siz[v]) swap(u,v);
siz[u] += siz[v];
par[v] = u;
return true;
}
int size(int u)
{
assert(0 <= u && u < n);
return siz[root(u)];
}
vector<vector<int>> components()
{
vector<vector<int>> ret(n);
for(int u = 0;u < n;u++) ret[root(u)].push_back(u);
ret.erase(remove_if(ret.begin(),ret.end(),[](vector<int> v) { return v.empty();}),ret.end());
return ret;
}
};
template<int m> struct modint
{
private:
unsigned int value;
static constexpr int mod() {return m;}
public:
constexpr modint(const long long x = 0) noexcept
{
long long y = x;
if(y < 0 || y >= mod())
{
y %= mod();
if(y < 0) y += mod();
}
value = (unsigned int)y;
}
static constexpr int get_mod() noexcept {return m;}
static constexpr int primitive_root() noexcept
{
assert(m == 998244353);
return 3;
}
constexpr unsigned int val() noexcept {return value;}
constexpr modint &operator+=(const modint &other) noexcept
{
value += other.value;
if(value >= mod()) value -= mod();
return *this;
}
constexpr modint &operator-=(const modint &other) noexcept
{
unsigned int x = value;
if(x < other.value) x += mod();
x -= other.value;
value = x;
return *this;
}
constexpr modint &operator*=(const modint &other) noexcept
{
unsigned long long x = value;
x *= other.value;
value = (unsigned int) (x % mod());
return *this;
}
constexpr modint &operator/=(const modint &other) noexcept
{
return *this *= other.inverse();
}
constexpr modint inverse() const noexcept
{
assert(value);
long long a = value,b = mod(),x = 1,y = 0;
while(b)
{
long long q = a/b;
a -= q*b; swap(a,b);
x -= q*y; swap(x,y);
}
return modint(x);
}
constexpr modint power(long long N) const noexcept
{
assert(N >= 0);
modint p = *this,ret = 1;
while(N)
{
if(N & 1) ret *= p;
p *= p;
N >>= 1;
}
return ret;
}
constexpr modint operator+() {return *this;}
constexpr modint operator-() {return modint() - *this;}
constexpr modint &operator++(int) noexcept {return *this += 1;}
constexpr modint &operator--(int) noexcept {return *this -= 1;}
friend modint operator+(const modint& lhs, const modint& rhs) {return modint(lhs) += rhs;}
friend modint operator-(const modint& lhs, const modint& rhs) {return modint(lhs) -= rhs;}
friend modint operator*(const modint& lhs, const modint& rhs) {return modint(lhs) *= rhs;}
friend modint operator/(const modint& lhs, const modint& rhs) {return modint(lhs) /= rhs;}
friend ostream &operator<<(ostream &os,const modint &x) {return os << x.value;}
};
using mint = modint<998244353>;
/* using mint = modint<1000000007>; */
template<class S>
struct combination
{
private:
vector<S> f,invf;
public:
combination(int N = 0) : f(1,1),invf(1,1)
{
update(N);
}
void update(int N)
{
if((int)f.size() > N) return;
int pi = (int)f.size();
N = max(N,pi*2);
f.resize(N+1),invf.resize(N+1);
for(int i = pi;i <= N;i++) f[i] = f[i-1]*i;
invf[N] = S(1)/f[N];
for(int i = N-1;i >= pi;i--) invf[i] = invf[i+1]*(i+1);
}
S factorial(int N)
{
update(N);
return f[N];
}
S invfactorial(int N)
{
update(N);
return invf[N];
}
S P(int N,int K)
{
assert(0 <= K && K <= N);
update(N);
return f[N]*invf[N-K];
}
S C(int N,int K)
{
assert(0 <= K && K <= N);
update(N);
return f[N]*invf[K]*invf[N-K];
}
};
combination<mint> C;
int ceil_log2(int n)
{
int res = 0;
while((1U << res) < (unsigned int)n)
{
res++;
}
return res;
}
template<class mint> void Butterfly(vector<mint> &a,bool inverse = false)
{
int N = (int)a.size();
int H = __builtin_ctz(N);
assert(N == (1 << H));
static constexpr int pr = mint::primitive_root();
static bool first_call = true;
static vector<mint> w(30),iw(30);
if(first_call)
{
first_call = false;
int cnt = __builtin_ctz(mint::get_mod() - 1);
mint e = mint(pr).power((mint::get_mod() - 1) >> cnt);
mint ie = e.inverse();
for(int i = cnt;i >= 1;i--)
{
w[i] = e;
iw[i] = ie;
e *= e;
ie *= ie;
}
}
if(!inverse)
{
int width = N;
int log = H;
const mint im = w[2];
while(width > 1)
{
mint cur = w[log];
if(width == 2)
{
int offset = width >> 1;
for(int i = 0;i < N;i += width)
{
mint root = 1;
for(int j = i;j < i + offset;j++)
{
mint s = a[j],t = a[j + offset];
a[j] = s + t;
a[j + offset] = (s - t) * root;
root *= cur;
}
}
width >>= 1;
log--;
}
else
{
int offset = width >> 2;
for(int i = 0;i < N;i += width)
{
mint root = 1;
for(int j = i;j < i + offset;j++)
{
mint root2 = root * root;
mint root3 = root2 * root;
mint s = a[j],t = a[j + offset],u = a[j + offset * 2],v = a[j + offset * 3];
mint spu = s + u;
mint smu = s - u;
mint tpv = t + v;
mint tmvim = (t - v) * im;
a[j] = spu + tpv;
a[j + offset] = (spu - tpv) * root2;
a[j + offset * 2] = (smu + tmvim) * root;
a[j + offset * 3] = (smu - tmvim) * root3;
root *= cur;
}
}
width >>= 2;
log -= 2;
}
}
}
else
{
int width = H & 1 ? 2 : 4;
int log = H & 1 ? 1 : 2;
const mint im = iw[2];
while(width <= N)
{
mint cur = iw[log];
if(width == 2)
{
int offset = width >> 1;
for(int i = 0;i < N;i += width)
{
mint root = 1;
for(int j = i;j < i + offset;j++)
{
mint s = a[j],t = a[j + offset] * root;
a[j] = s + t;
a[j + offset] = s - t;
root *= cur;
}
}
}
else
{
int offset = width >> 2;
for(int i = 0;i < N;i += width)
{
mint root = 1;
for(int j = i;j < i + offset;j++)
{
mint root2 = root * root;
mint root3 = root2 * root;
mint s = a[j],t = a[j + offset] * root2,u = a[j + offset * 2] * root,v = a[j + offset * 3] * root3;
mint spt = s + t;
mint smt = s - t;
mint upv = u + v;
mint umvim = (u - v) * im;
a[j] = spt + upv;
a[j + offset] = smt + umvim;
a[j + offset * 2] = spt - upv;
a[j + offset * 3] = smt - umvim;
root *= cur;
}
}
}
width <<= 2;
log += 2;
}
}
}
template<class mint> vector<mint> Convolution(vector<mint> a,vector<mint> b)
{
int N = (int)a.size(),M = (int)b.size();
if(min(N,M) <= 60)
{
vector<mint> res(N + M - 1);
if(N < M)
{
swap(N,M);
swap(a,b);
}
for(int i = 0;i < N;i++)
{
for(int j = 0;j < M;j++)
{
res[i + j] += a[i] * b[j];
}
}
return res;
}
int L = 1 << ceil_log2(N + M - 1);
a.resize(L);
b.resize(L);
Butterfly(a);
Butterfly(b);
for(int i = 0;i < L;i++)
{
a[i] *= b[i];
}
Butterfly(a,true);
a.resize(N + M - 1);
const mint invL = mint(L).inverse();
for(int i = 0;i < N + M - 1;i++)
{
a[i] *= invL;
}
return a;
}
void Main()
{
int N;
cin >> N;
vector<int> A(N);
for(int i = 0;i < N;i++)
{
cin >> A[i];
}
vector<mint> dp(N);
mint ans = 0;
auto dfs = [&](auto dfs,int l,int r) -> void
{
if(l + 1 == r)
{
dp[l] += C.factorial(A[l]);
ans += dp[l] * C.invfactorial(A[l]);
return;
}
int mid = (l + r) / 2;
dfs(dfs,l,mid);
vector<mint> P(A[l] - A[mid - 1] + 1),Q(A[l] - A[r - 1] + 1);
for(int i = l;i < mid;i++)
{
P[A[l] - A[i]] += dp[i];
}
for(int i = 0;i < (int)Q.size();i++)
{
Q[i] = C.invfactorial(i);
}
P = Convolution(P,Q);
for(int i = mid;i < r;i++)
{
dp[i] += P[A[l] - A[i]];
}
dfs(dfs,mid,r);
};
dfs(dfs,0,N);
cout << ans << "\n";
/* vector<mint> dp(N); */
/* mint ans = 0; */
/* for(int i = N - 1;i >= 0;i--) */
/* { */
/* for(int j = i + 1;j < N;j++) */
/* { */
/* dp[i] += dp[j] * C.C(A[i],A[j]); */
/* } */
/* dp[i]++; */
/* ans += dp[i]; */
/* cout << dp[i] << (i ? " ":"\n"); */
/* } */
/* cout << ans << "\n"; */
/* const int M = (int)1e5; */
/* for(int i = 0;i < N;i++) */
/* { */
/* vector<mint> dp(M + 1); */
/* dp[A[i]] += C.factorial(A[i]); */
/* for(int j = i + 1;j < N;j++) */
/* { */
/* for(int k = A[j];k <= M;k++) */
/* { */
/* dp[A[j]] += dp[k] * C.invfactorial(k - A[j]); */
/* } */
/* } */
/* mint ans = 0; */
/* for(int j = 0;j <= M;j++) */
/* { */
/* ans += dp[j] * C.invfactorial(j); */
/* } */
/* cout << ans << (i + 1 == N ? "\n":" "); */
/* } */
/* vector<mint> dp(M + 1); */
/* for(int i = 0;i < N;i++) */
/* { */
/* for(int j = A[i];j <= M;j++) */
/* { */
/* dp[A[i]] += dp[j] * C.invfactorial(j - A[i]); */
/* } */
/* dp[A[i]] += C.factorial(A[i]); */
/* } */
/* mint ans = 0; */
/* for(int i = 0;i <= M;i++) */
/* { */
/* ans += dp[i] * C.invfactorial(i); */
/* } */
/* cout << ans << "\n"; */
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
int tt = 1;
/* cin >> tt; */
while(tt--) Main();
}
ゆにぽけ