結果

問題 No.2633 Subsequence Combination Score
ユーザー 👑 potato167potato167
提出日時 2024-02-17 01:00:59
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,124 ms / 2,000 ms
コード長 7,299 bytes
コンパイル時間 540 ms
コンパイル使用メモリ 82,512 KB
実行使用メモリ 127,260 KB
最終ジャッジ日時 2024-09-28 23:19:22
合計ジャッジ時間 47,513 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1,055 ms
125,336 KB
testcase_01 AC 1,077 ms
125,276 KB
testcase_02 AC 1,066 ms
125,280 KB
testcase_03 AC 1,093 ms
126,088 KB
testcase_04 AC 1,056 ms
125,620 KB
testcase_05 AC 1,057 ms
125,816 KB
testcase_06 AC 1,081 ms
125,824 KB
testcase_07 AC 1,068 ms
125,804 KB
testcase_08 AC 1,078 ms
126,932 KB
testcase_09 AC 1,112 ms
126,716 KB
testcase_10 AC 1,088 ms
126,348 KB
testcase_11 AC 1,089 ms
126,256 KB
testcase_12 AC 1,071 ms
125,864 KB
testcase_13 AC 1,076 ms
125,704 KB
testcase_14 AC 1,074 ms
125,844 KB
testcase_15 AC 1,078 ms
126,368 KB
testcase_16 AC 1,077 ms
126,344 KB
testcase_17 AC 1,089 ms
125,972 KB
testcase_18 AC 1,072 ms
125,856 KB
testcase_19 AC 1,103 ms
126,704 KB
testcase_20 AC 1,078 ms
126,448 KB
testcase_21 AC 1,079 ms
126,452 KB
testcase_22 AC 1,085 ms
126,208 KB
testcase_23 AC 1,100 ms
126,844 KB
testcase_24 AC 1,090 ms
126,404 KB
testcase_25 AC 1,110 ms
126,064 KB
testcase_26 AC 1,069 ms
126,592 KB
testcase_27 AC 1,075 ms
126,536 KB
testcase_28 AC 1,074 ms
126,328 KB
testcase_29 AC 1,088 ms
125,284 KB
testcase_30 AC 1,069 ms
125,388 KB
testcase_31 AC 1,087 ms
125,340 KB
testcase_32 AC 1,079 ms
125,160 KB
testcase_33 AC 1,078 ms
126,716 KB
testcase_34 AC 1,094 ms
126,676 KB
testcase_35 AC 1,067 ms
127,260 KB
testcase_36 AC 1,078 ms
126,708 KB
testcase_37 AC 1,096 ms
126,364 KB
testcase_38 AC 1,124 ms
126,536 KB
testcase_39 AC 1,116 ms
126,612 KB
testcase_40 AC 1,071 ms
126,208 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#https://atcoder.jp/contests/practice2/submissions/24974537
_fft_mod = 998244353
_fft_imag = 911660635
_fft_iimag = 86583718
_fft_rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601,
              842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899)
_fft_irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960,
               354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235)
_fft_rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099,
              183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204)
_fft_irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500,
               771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681)


def _butterfly(a):
    n = len(a)
    h = (n - 1).bit_length()
    len_ = 0
    while len_ < h:
        if h - len_ == 1:
            p = 1 << (h - len_ - 1)
            rot = 1
            for s in range(1 << len_):
                offset = s << (h - len_)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p] * rot % _fft_mod
                    a[i + offset] = (l + r) % _fft_mod
                    a[i + offset + p] = (l - r) % _fft_mod
                if s + 1 != (1 << len_):
                    rot *= _fft_rate2[(~s & -~s).bit_length() - 1]
                    rot %= _fft_mod
            len_ += 1
        else:
            p = 1 << (h - len_ - 2)
            rot = 1
            for s in range(1 << len_):
                rot2 = rot * rot % _fft_mod
                rot3 = rot2 * rot % _fft_mod
                offset = s << (h - len_)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p] * rot
                    a2 = a[i + offset + p * 2] * rot2
                    a3 = a[i + offset + p * 3] * rot3
                    a1na3imag = (a1 - a3) % _fft_mod * _fft_imag
                    a[i + offset] = (a0 + a2 + a1 + a3) % _fft_mod
                    a[i + offset + p] = (a0 + a2 - a1 - a3) % _fft_mod
                    a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % _fft_mod
                    a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % _fft_mod
                if s + 1 != (1 << len_):
                    rot *= _fft_rate3[(~s & -~s).bit_length() - 1]
                    rot %= _fft_mod
            len_ += 2


def _butterfly_inv(a):
    n = len(a)
    h = (n - 1).bit_length()
    len_ = h
    while len_:
        if len_ == 1:
            p = 1 << (h - len_)
            irot = 1
            for s in range(1 << (len_ - 1)):
                offset = s << (h - len_ + 1)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p]
                    a[i + offset] = (l + r) % _fft_mod
                    a[i + offset + p] = (l - r) * irot % _fft_mod
                if s + 1 != (1 << (len_ - 1)):
                    irot *= _fft_irate2[(~s & -~s).bit_length() - 1]
                    irot %= _fft_mod
            len_ -= 1
        else:
            p = 1 << (h - len_)
            irot = 1
            for s in range(1 << (len_ - 2)):
                irot2 = irot * irot % _fft_mod
                irot3 = irot2 * irot % _fft_mod
                offset = s << (h - len_ + 2)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p]
                    a2 = a[i + offset + p * 2]
                    a3 = a[i + offset + p * 3]
                    a2na3iimag = (a2 - a3) * _fft_iimag % _fft_mod
                    a[i + offset] = (a0 + a1 + a2 + a3) % _fft_mod
                    a[i + offset + p] = (a0 - a1 +
                                         a2na3iimag) * irot % _fft_mod
                    a[i + offset + p * 2] = (a0 + a1 -
                                             a2 - a3) * irot2 % _fft_mod
                    a[i + offset + p * 3] = (a0 - a1 -
                                             a2na3iimag) * irot3 % _fft_mod
                if s + 1 != (1 << (len_ - 1)):
                    irot *= _fft_irate3[(~s & -~s).bit_length() - 1]
                    irot %= _fft_mod
            len_ -= 2


def _convolution_naive(a, b):
    n = len(a)
    m = len(b)
    ans = [0] * (n + m - 1)
    if n < m:
        for j in range(m):
            for i in range(n):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
    else:
        for i in range(n):
            for j in range(m):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
    return ans


def _convolution_fft(a, b):
    a = a.copy()
    b = b.copy()
    n = len(a)
    m = len(b)
    z = 1 << (n + m - 2).bit_length()
    a += [0] * (z - n)
    _butterfly(a)
    b += [0] * (z - m)
    _butterfly(b)
    for i in range(z):
        a[i] = a[i] * b[i] % _fft_mod
    _butterfly_inv(a)
    a = a[:n + m - 1]
    iz = pow(z, _fft_mod - 2, _fft_mod)
    for i in range(n + m - 1):
        a[i] = a[i] * iz % _fft_mod
    return a


def _convolution_square(a):
    a = a.copy()
    n = len(a)
    z = 1 << (2 * n - 2).bit_length()
    a += [0] * (z - n)
    _butterfly(a)
    for i in range(z):
        a[i] = a[i] * a[i] % _fft_mod
    _butterfly_inv(a)
    a = a[:2 * n - 1]
    iz = pow(z, _fft_mod - 2, _fft_mod)
    for i in range(2 * n - 1):
        a[i] = a[i] * iz % _fft_mod
    return a


def convolution(a, b):
    """It calculates (+, x) convolution in mod 998244353. 
    Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1], 
    it calculates the array c of length n + m - 1, defined by

    >   c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353.

    It returns an empty list if at least one of a and b are empty.

    Constraints
    -----------

    >   len(a) + len(b) <= 8388609

    Complexity
    ----------

    >   O(n log n), where n = len(a) + len(b).
    """
    n = len(a)
    m = len(b)
    if n == 0 or m == 0:
        return []
    if min(n, m) <= 0:
        return _convolution_naive(a, b)
    if a is b:
        return _convolution_square(a)
    return _convolution_fft(a, b)

N=int(input())
A=list(map(int,input().split()))
mod=998244353
L=(1<<17)
B=[0]*L
for a in A:
    B[a]+=1
dp=[0]*L
fact=[1]*L
for i in range(1,L): fact[i]=fact[i-1]*i%mod
fact_inv=[1]*L
fact_inv[L-1]=pow(fact[L-1],-1,mod)
for i in range(L-1,0,-1): fact_inv[i-1]=fact_inv[i]*i%mod

def f(l,r):
    if l+1==r:
        dp[l]+=fact_inv[l]
        dp[l]*=(pow(2,B[l],mod)-1)
        dp[l]%=mod
        return dp[l]*fact[l]%mod
    res=0
    m=(l+r)//2
    res+=f(l,m)
    p=[0]*(m-l)
    q=[0]*(r-l)
    for i in range(m-l): p[i]=dp[i+l]
    for i in range(r-l): q[i]=fact_inv[i]
    p=convolution(p,q)
    for i in range(r-m): dp[i+m]=(dp[i+m]+p[i+m-l])%mod
    res+=f(m,r)
    return res%mod
print(f(0,L))
0