結果
問題 | No.2635 MST on Line++ 2 |
ユーザー | 👑 rin204 |
提出日時 | 2024-02-18 18:49:53 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 24,872 bytes |
コンパイル時間 | 3,841 ms |
コンパイル使用メモリ | 275,640 KB |
実行使用メモリ | 18,780 KB |
最終ジャッジ日時 | 2024-09-29 00:47:14 |
合計ジャッジ時間 | 7,815 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
13,632 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 1 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | AC | 5 ms
6,820 KB |
testcase_05 | TLE | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
testcase_42 | -- | - |
testcase_43 | -- | - |
testcase_44 | -- | - |
ソースコード
// #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; // #define INTERACTIVE namespace templates { // type using ll = long long; using ull = unsigned long long; using Pii = pair<int, int>; using Pil = pair<int, ll>; using Pli = pair<ll, int>; using Pll = pair<ll, ll>; template <class T> using pq = priority_queue<T>; template <class T> using qp = priority_queue<T, vector<T>, greater<T>>; // clang-format off #define vec(T, A, ...) vector<T> A(__VA_ARGS__); #define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__)); #define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__))); // clang-format on // for loop #define fori1(a) for (ll _ = 0; _ < (a); _++) #define fori2(i, a) for (ll i = 0; i < (a); i++) #define fori3(i, a, b) for (ll i = (a); i < (b); i++) #define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c)) #define overload4(a, b, c, d, e, ...) e #define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__) // declare and input // clang-format off #define INT(...) int __VA_ARGS__; inp(__VA_ARGS__); #define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__); #define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__); #define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__); #define DOUBLE(...) double __VA_ARGS__; STRING(str___); __VA_ARGS__ = stod(str___); #define VEC(T, A, n) vector<T> A(n); inp(A); #define VVEC(T, A, n, m) vector<vector<T>> A(n, vector<T>(m)); inp(A); // clang-format on // const value const ll MOD1 = 1000000007; const ll MOD9 = 998244353; const double PI = acos(-1); // other macro #if !defined(RIN__LOCAL) && !defined(INTERACTIVE) #define endl "\n" #endif #define spa ' ' #define len(A) ll(A.size()) #define all(A) begin(A), end(A) // function vector<char> stoc(string &S) { int n = S.size(); vector<char> ret(n); for (int i = 0; i < n; i++) ret[i] = S[i]; return ret; } string ctos(vector<char> &S) { int n = S.size(); string ret = ""; for (int i = 0; i < n; i++) ret += S[i]; return ret; } template <class T> auto min(const T &a) { return *min_element(all(a)); } template <class T> auto max(const T &a) { return *max_element(all(a)); } template <class T, class S> auto clamp(T &a, const S &l, const S &r) { return (a > r ? r : a < l ? l : a); } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } template <class T, class S> inline bool chclamp(T &a, const S &l, const S &r) { auto b = clamp(a, l, r); return (a != b ? a = b, 1 : 0); } template <typename T> T sum(vector<T> &A) { T tot = 0; for (auto a : A) tot += a; return tot; } template <typename T> vector<T> compression(vector<T> X) { sort(all(X)); X.erase(unique(all(X)), X.end()); return X; } // input and output namespace io { // vector<T> template <typename T> istream &operator>>(istream &is, vector<T> &A) { for (auto &a : A) is >> a; return is; } template <typename T> ostream &operator<<(ostream &os, vector<T> &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << ' '; } return os; } // vector<vector<T>> template <typename T> istream &operator>>(istream &is, vector<vector<T>> &A) { for (auto &a : A) is >> a; return is; } template <typename T> ostream &operator<<(ostream &os, vector<vector<T>> &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << endl; } return os; } // pair<S, T> template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &A) { is >> A.first >> A.second; return is; } template <typename S, typename T> ostream &operator<<(ostream &os, pair<S, T> &A) { os << A.first << ' ' << A.second; return os; } // vector<pair<S, T>> template <typename S, typename T> istream &operator>>(istream &is, vector<pair<S, T>> &A) { for (size_t i = 0; i < A.size(); i++) { is >> A[i]; } return is; } template <typename S, typename T> ostream &operator<<(ostream &os, vector<pair<S, T>> &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << endl; } return os; } // tuple template <typename T, size_t N> struct TuplePrint { static ostream &print(ostream &os, const T &t) { TuplePrint<T, N - 1>::print(os, t); os << ' ' << get<N - 1>(t); return os; } }; template <typename T> struct TuplePrint<T, 1> { static ostream &print(ostream &os, const T &t) { os << get<0>(t); return os; } }; template <typename... Args> ostream &operator<<(ostream &os, const tuple<Args...> &t) { TuplePrint<decltype(t), sizeof...(Args)>::print(os, t); return os; } // io functions void FLUSH() { cout << flush; } void print() { cout << endl; } template <class Head, class... Tail> void print(Head &&head, Tail &&...tail) { cout << head; if (sizeof...(Tail)) cout << spa; print(std::forward<Tail>(tail)...); } template <typename T, typename S> void prisep(vector<T> &A, S sep) { int n = A.size(); for (int i = 0; i < n; i++) { cout << A[i]; if (i != n - 1) cout << sep; } cout << endl; } template <typename T, typename S> void priend(T A, S end) { cout << A << end; } template <typename T> void prispa(T A) { priend(A, spa); } template <typename T, typename S> bool printif(bool f, T A, S B) { if (f) print(A); else print(B); return f; } template <class... T> void inp(T &...a) { (cin >> ... >> a); } } // namespace io using namespace io; // read graph vector<vector<int>> read_edges(int n, int m, bool direct = false, int indexed = 1) { vector<vector<int>> edges(n, vector<int>()); for (int i = 0; i < m; i++) { INT(u, v); u -= indexed; v -= indexed; edges[u].push_back(v); if (!direct) edges[v].push_back(u); } return edges; } vector<vector<int>> read_tree(int n, int indexed = 1) { return read_edges(n, n - 1, false, indexed); } template <typename T = long long> vector<vector<pair<int, T>>> read_wedges(int n, int m, bool direct = false, int indexed = 1) { vector<vector<pair<int, T>>> edges(n, vector<pair<int, T>>()); for (int i = 0; i < m; i++) { INT(u, v); T w; inp(w); u -= indexed; v -= indexed; edges[u].push_back({v, w}); if (!direct) edges[v].push_back({u, w}); } return edges; } template <typename T = long long> vector<vector<pair<int, T>>> read_wtree(int n, int indexed = 1) { return read_wedges<T>(n, n - 1, false, indexed); } // yes / no namespace yesno { // yes inline bool yes(bool f = true) { cout << (f ? "yes" : "no") << endl; return f; } inline bool Yes(bool f = true) { cout << (f ? "Yes" : "No") << endl; return f; } inline bool YES(bool f = true) { cout << (f ? "YES" : "NO") << endl; return f; } // no inline bool no(bool f = true) { cout << (!f ? "yes" : "no") << endl; return f; } inline bool No(bool f = true) { cout << (!f ? "Yes" : "No") << endl; return f; } inline bool NO(bool f = true) { cout << (!f ? "YES" : "NO") << endl; return f; } // possible inline bool possible(bool f = true) { cout << (f ? "possible" : "impossible") << endl; return f; } inline bool Possible(bool f = true) { cout << (f ? "Possible" : "Impossible") << endl; return f; } inline bool POSSIBLE(bool f = true) { cout << (f ? "POSSIBLE" : "IMPOSSIBLE") << endl; return f; } // impossible inline bool impossible(bool f = true) { cout << (!f ? "possible" : "impossible") << endl; return f; } inline bool Impossible(bool f = true) { cout << (!f ? "Possible" : "Impossible") << endl; return f; } inline bool IMPOSSIBLE(bool f = true) { cout << (!f ? "POSSIBLE" : "IMPOSSIBLE") << endl; return f; } // Alice Bob inline bool Alice(bool f = true) { cout << (f ? "Alice" : "Bob") << endl; return f; } inline bool Bob(bool f = true) { cout << (f ? "Bob" : "Alice") << endl; return f; } // Takahashi Aoki inline bool Takahashi(bool f = true) { cout << (f ? "Takahashi" : "Aoki") << endl; return f; } inline bool Aoki(bool f = true) { cout << (f ? "Aoki" : "Takahashi") << endl; return f; } } // namespace yesno using namespace yesno; } // namespace templates using namespace templates; template <int MOD> struct Modint { int x; Modint() : x(0) {} Modint(int64_t y) { if (y >= 0) x = y % MOD; else x = (y % MOD + MOD) % MOD; } Modint &operator+=(const Modint &p) { x += p.x; if (x >= MOD) x -= MOD; return *this; } Modint &operator-=(const Modint &p) { x -= p.x; if (x < 0) x += MOD; return *this; } Modint &operator*=(const Modint &p) { x = int(1LL * x * p.x % MOD); return *this; } Modint &operator/=(const Modint &p) { *this *= p.inverse(); return *this; } Modint &operator%=(const Modint &p) { assert(p.x == 0); return *this; } Modint operator-() const { return Modint(-x); } Modint &operator++() { x++; if (x == MOD) x = 0; return *this; } Modint &operator--() { if (x == 0) x = MOD; x--; return *this; } Modint operator++(int) { Modint result = *this; ++*this; return result; } Modint operator--(int) { Modint result = *this; --*this; return result; } friend Modint operator+(const Modint &lhs, const Modint &rhs) { return Modint(lhs) += rhs; } friend Modint operator-(const Modint &lhs, const Modint &rhs) { return Modint(lhs) -= rhs; } friend Modint operator*(const Modint &lhs, const Modint &rhs) { return Modint(lhs) *= rhs; } friend Modint operator/(const Modint &lhs, const Modint &rhs) { return Modint(lhs) /= rhs; } friend Modint operator%(const Modint &lhs, const Modint &rhs) { assert(rhs.x == 0); return Modint(lhs); } bool operator==(const Modint &p) const { return x == p.x; } bool operator!=(const Modint &p) const { return x != p.x; } bool operator<(const Modint &rhs) const { return x < rhs.x; } bool operator<=(const Modint &rhs) const { return x <= rhs.x; } bool operator>(const Modint &rhs) const { return x > rhs.x; } bool operator>=(const Modint &rhs) const { return x >= rhs.x; } Modint inverse() const { int a = x, b = MOD, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; u -= t * v; std::swap(a, b); std::swap(u, v); } return Modint(u); } Modint pow(int64_t k) const { Modint ret(1); Modint y(x); while (k > 0) { if (k & 1) ret *= y; y *= y; k >>= 1; } return ret; } friend std::ostream &operator<<(std::ostream &os, const Modint &p) { return os << p.x; } friend std::istream &operator>>(std::istream &is, Modint &p) { int64_t y; is >> y; p = Modint<MOD>(y); return (is); } static int get_mod() { return MOD; } }; struct Arbitrary_Modint { int x; static int MOD; static void set_mod(int mod) { MOD = mod; } Arbitrary_Modint() : x(0) {} Arbitrary_Modint(int64_t y) { if (y >= 0) x = y % MOD; else x = (y % MOD + MOD) % MOD; } Arbitrary_Modint &operator+=(const Arbitrary_Modint &p) { x += p.x; if (x >= MOD) x -= MOD; return *this; } Arbitrary_Modint &operator-=(const Arbitrary_Modint &p) { x -= p.x; if (x < 0) x += MOD; return *this; } Arbitrary_Modint &operator*=(const Arbitrary_Modint &p) { x = int(1LL * x * p.x % MOD); return *this; } Arbitrary_Modint &operator/=(const Arbitrary_Modint &p) { *this *= p.inverse(); return *this; } Arbitrary_Modint &operator%=(const Arbitrary_Modint &p) { assert(p.x == 0); return *this; } Arbitrary_Modint operator-() const { return Arbitrary_Modint(-x); } Arbitrary_Modint &operator++() { x++; if (x == MOD) x = 0; return *this; } Arbitrary_Modint &operator--() { if (x == 0) x = MOD; x--; return *this; } Arbitrary_Modint operator++(int) { Arbitrary_Modint result = *this; ++*this; return result; } Arbitrary_Modint operator--(int) { Arbitrary_Modint result = *this; --*this; return result; } friend Arbitrary_Modint operator+(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) += rhs; } friend Arbitrary_Modint operator-(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) -= rhs; } friend Arbitrary_Modint operator*(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) *= rhs; } friend Arbitrary_Modint operator/(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) /= rhs; } friend Arbitrary_Modint operator%(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { assert(rhs.x == 0); return Arbitrary_Modint(lhs); } bool operator==(const Arbitrary_Modint &p) const { return x == p.x; } bool operator!=(const Arbitrary_Modint &p) const { return x != p.x; } bool operator<(const Arbitrary_Modint &rhs) { return x < rhs.x; } bool operator<=(const Arbitrary_Modint &rhs) { return x <= rhs.x; } bool operator>(const Arbitrary_Modint &rhs) { return x > rhs.x; } bool operator>=(const Arbitrary_Modint &rhs) { return x >= rhs.x; } Arbitrary_Modint inverse() const { int a = x, b = MOD, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; u -= t * v; std::swap(a, b); std::swap(u, v); } return Arbitrary_Modint(u); } Arbitrary_Modint pow(int64_t k) const { Arbitrary_Modint ret(1); Arbitrary_Modint y(x); while (k > 0) { if (k & 1) ret *= y; y *= y; k >>= 1; } return ret; } friend std::ostream &operator<<(std::ostream &os, const Arbitrary_Modint &p) { return os << p.x; } friend std::istream &operator>>(std::istream &is, Arbitrary_Modint &p) { int64_t y; is >> y; p = Arbitrary_Modint(y); return (is); } static int get_mod() { return MOD; } }; int Arbitrary_Modint::MOD = 998244353; using modint9 = Modint<998244353>; using modint1 = Modint<1000000007>; using modint = Arbitrary_Modint; using mint = modint9; template <typename mint> struct NumberTheoreticTransform { static std::vector<mint> roots, iroots, rate3, irate3; static int max_base; NumberTheoreticTransform() = default; static void init() { if (!roots.empty()) return; const unsigned mod = mint::get_mod(); auto tmp = mod - 1; max_base = 0; while (tmp % 2 == 0) { tmp >>= 1; max_base++; } mint root = 2; while (root.pow((mod - 1) >> 1) == 1) root++; roots.resize(max_base + 1); iroots.resize(max_base + 1); rate3.resize(max_base + 1); irate3.resize(max_base + 1); roots[max_base] = root.pow((mod - 1) >> max_base); iroots[max_base] = mint(1) / roots[max_base]; for (int i = max_base - 1; i >= 0; i--) { roots[i] = roots[i + 1] * roots[i + 1]; iroots[i] = iroots[i + 1] * iroots[i + 1]; } mint prod = 1, iprod = 1; for (int i = 0; i <= max_base - 3; i++) { rate3[i] = roots[i + 3] * prod; irate3[i] = iroots[i + 3] * iprod; prod *= iroots[i + 3]; iprod *= roots[i + 3]; } } static void ntt(std::vector<mint> &A) { init(); int n = int(A.size()); int h = __builtin_ctz(n); int le = 0; mint imag = roots[2]; if (h & 1) { int p = 1 << (h - 1); for (int i = 0; i < p; i++) { auto r = A[i + p]; A[i + p] = A[i] - r; A[i] += r; } le++; } for (; le + 1 < h; le += 2) { int p = 1 << (h - le - 2); for (int i = 0; i < p; i++) { auto a0 = A[i]; auto a1 = A[i + p]; auto a2 = A[i + 2 * p]; auto a3 = A[i + 3 * p]; auto a1na3imag = (a1 - a3) * imag; A[i] = a0 + a2 + a1 + a3; A[i + p] = a0 + a2 - (a1 + a3); A[i + 2 * p] = a0 - a2 + a1na3imag; A[i + 3 * p] = a0 - a2 - a1na3imag; } mint rot = rate3[0]; for (int s = 1; s < (1 << le); s++) { int offset = s << (h - le); mint rot2 = rot * rot; mint rot3 = rot2 * rot; for (int i = 0; i < p; i++) { auto a0 = A[i + offset]; auto a1 = A[i + offset + p] * rot; auto a2 = A[i + offset + 2 * p] * rot2; auto a3 = A[i + offset + 3 * p] * rot3; auto a1na3imag = (a1 - a3) * imag; A[i + offset] = a0 + a2 + a1 + a3; A[i + offset + p] = a0 + a2 - (a1 + a3); A[i + offset + 2 * p] = a0 - a2 + a1na3imag; A[i + offset + 3 * p] = a0 - a2 - a1na3imag; } rot *= rate3[__builtin_ctz(~s)]; } } } static void intt(std::vector<mint> &A, bool f = true) { init(); int n = int(A.size()); int h = __builtin_ctz(n); int le = h; mint iimag = iroots[2]; for (; le > 1; le -= 2) { int p = 1 << (h - le); for (int i = 0; i < p; i++) { auto a0 = A[i]; auto a1 = A[i + p]; auto a2 = A[i + 2 * p]; auto a3 = A[i + 3 * p]; auto a2na3iimag = (a2 - a3) * iimag; A[i] = a0 + a1 + a2 + a3; A[i + p] = a0 - a1 + a2na3iimag; A[i + 2 * p] = a0 + a1 - (a2 + a3); A[i + 3 * p] = a0 - a1 - a2na3iimag; } mint irot = irate3[0]; for (int s = 1; s < (1 << (le - 2)); s++) { int offset = s << (h - le + 2); mint irot2 = irot * irot; mint irot3 = irot2 * irot; for (int i = 0; i < p; i++) { auto a0 = A[i + offset]; auto a1 = A[i + offset + p]; auto a2 = A[i + offset + 2 * p]; auto a3 = A[i + offset + 3 * p]; auto a2na3iimag = (a2 - a3) * iimag; A[i + offset] = a0 + a1 + a2 + a3; A[i + offset + p] = (a0 - a1 + a2na3iimag) * irot; A[i + offset + 2 * p] = (a0 + a1 - (a2 + a3)) * irot2; A[i + offset + 3 * p] = (a0 - a1 - a2na3iimag) * irot3; } irot *= irate3[__builtin_ctz(~s)]; } } if (le >= 1) { int p = 1 << (h - 1); for (int i = 0; i < p; i++) { auto ajp = A[i] - A[i + p]; A[i] += A[i + p]; A[i + p] = ajp; } } if (f) { mint inv = mint(1) / n; for (int i = 0; i < n; i++) { A[i] *= inv; } } } static std::vector<mint> multiply(std::vector<mint> A, std::vector<mint> B) { int need = int(A.size() + B.size()) - 1; if (std::min(A.size(), B.size()) < 60u) { std::vector<mint> C(need, 0); for (size_t i = 0; i < A.size(); i++) for (size_t j = 0; j < B.size(); j++) { C[i + j] += A[i] * B[j]; } return C; } int sz = 1; while (sz < need) sz <<= 1; A.resize(sz, 0); B.resize(sz, 0); ntt(A); ntt(B); mint inv = mint(1) / sz; for (int i = 0; i < sz; i++) A[i] *= B[i] * inv; intt(A, false); A.resize(need); return A; } }; template <typename mint> std::vector<mint> NumberTheoreticTransform<mint>::roots = std::vector<mint>(); template <typename mint> std::vector<mint> NumberTheoreticTransform<mint>::iroots = std::vector<mint>(); template <typename mint> std::vector<mint> NumberTheoreticTransform<mint>::rate3 = std::vector<mint>(); template <typename mint> std::vector<mint> NumberTheoreticTransform<mint>::irate3 = std::vector<mint>(); template <typename mint> int NumberTheoreticTransform<mint>::max_base = 0; template <typename T> struct Combination { int N; std::vector<T> fact, invfact; Combination(int N) : N(N) { fact.resize(N + 1); invfact.resize(N + 1); fact[0] = 1; for (int i = 1; i <= N; i++) { fact[i] = fact[i - 1] * i; } invfact[N] = T(1) / fact[N]; for (int i = N - 1; i >= 0; i--) { invfact[i] = invfact[i + 1] * (i + 1); } } void extend(int n) { int le = fact.size(); fact.resize(n + 1); invfact.resize(n + 1); for (int i = le; i <= n; i++) { fact[i] = fact[i - 1] * i; } invfact[n] = T(1) / fact[n]; for (int i = n - 1; i >= le; i--) { invfact[i] = invfact[i + 1] * (i + 1); } } T nCk(int n, int k) { if (k > n || k < 0) return T(0); if (n >= int(fact.size())) extend(n); return fact[n] * invfact[k] * invfact[n - k]; } T nPk(int n, int k) { if (k > n || k < 0) return T(0); if (n >= int(fact.size())) extend(n); return fact[n] * invfact[n - k]; } T nHk(int n, int k) { if (n == 0 && k == 0) return T(1); return nCk(n + k - 1, k); } T Catalan(int n) { return nCk(2 * n, n) - nCk(2 * n, n + 1); } // n 個の +1, m 個の -1, 累積和が常にk以下 T Catalan(int n, int m, int k) { if (n > m + k || k < 0) return T(0); else return nCk(n + m, n) - nCk(n + m, m + k + 1); } T Narayana(int n, int k) { return nCk(n, k) * nCk(n, k - 1) / n; } T inv(int n) { assert(n >= 1); if (n >= int(fact.size())) extend(n); return invfact[n] * fact[n - 1]; } }; using NTT = NumberTheoreticTransform<mint>; void solve() { LL(n, k); Combination<mint> Comb(n + 10); VEC(ll, A_, n); sort(all(A_)); fori(i, n - 1, 0, -1) A_[i] -= A_[i - 1]; mint ans = Comb.fact[n] * (n - 1) * A_[0]; vec(mint, A, n); fori(i, n) A[i] = A_[i]; fori(i, 1, n) A[i] *= Comb.fact[n - i]; A[0] = 0; auto res = NTT::multiply(A, Comb.invfact); fori(i, n - 1) { ll l = max<ll>(0, i + 1 - k); ll r = min<ll>(n - 1, i + k); ll d = r - l + 1; mint tot = res[n - d]; tot = 0; fori(j, n - d + 1) { tot += Comb.invfact[n - j - d] * A[j]; } tot *= Comb.fact[n - d]; ans += tot; } print(ans); } int main() { #ifndef INTERACTIVE cin.tie(0)->sync_with_stdio(0); #endif // cout << fixed << setprecision(12); int t; t = 1; // cin >> t; while (t--) solve(); return 0; }