結果
問題 | No.2640 traO Stamps |
ユーザー | Forested |
提出日時 | 2024-02-19 21:29:27 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 65 ms / 2,000 ms |
コード長 | 7,250 bytes |
コンパイル時間 | 2,149 ms |
コンパイル使用メモリ | 209,920 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-09-29 01:25:08 |
合計ジャッジ時間 | 5,830 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 33 |
ソースコード
#ifndef LOCAL #define FAST_IO #endif // ============ #include <bits/stdc++.h> #define OVERRIDE(a, b, c, d, ...) d #define REP2(i, n) for (i32 i = 0; i < (i32)(n); ++i) #define REP3(i, m, n) for (i32 i = (i32)(m); i < (i32)(n); ++i) #define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__) #define PER2(i, n) for (i32 i = (i32)(n)-1; i >= 0; --i) #define PER3(i, m, n) for (i32 i = (i32)(n)-1; i >= (i32)(m); --i) #define PER(...) OVERRIDE(__VA_ARGS__, PER3, PER2)(__VA_ARGS__) #define ALL(x) begin(x), end(x) #define LEN(x) (i32)(x.size()) using namespace std; using u32 = unsigned int; using u64 = unsigned long long; using i32 = signed int; using i64 = signed long long; using f64 = double; using f80 = long double; using pi = pair<i32, i32>; using pl = pair<i64, i64>; template <typename T> using V = vector<T>; template <typename T> using VV = V<V<T>>; template <typename T> using VVV = V<V<V<T>>>; template <typename T> using VVVV = V<V<V<V<T>>>>; template <typename T> using PQR = priority_queue<T, V<T>, greater<T>>; template <typename T> bool chmin(T &x, const T &y) { if (x > y) { x = y; return true; } return false; } template <typename T> bool chmax(T &x, const T &y) { if (x < y) { x = y; return true; } return false; } template <typename T> i32 lob(const V<T> &arr, const T &v) { return (i32)(lower_bound(ALL(arr), v) - arr.begin()); } template <typename T> i32 upb(const V<T> &arr, const T &v) { return (i32)(upper_bound(ALL(arr), v) - arr.begin()); } template <typename T> V<i32> argsort(const V<T> &arr) { V<i32> ret(arr.size()); iota(ALL(ret), 0); sort(ALL(ret), [&](i32 i, i32 j) -> bool { if (arr[i] == arr[j]) { return i < j; } else { return arr[i] < arr[j]; } }); return ret; } #ifdef INT128 using u128 = __uint128_t; using i128 = __int128_t; #endif [[maybe_unused]] constexpr i32 INF = 1000000100; [[maybe_unused]] constexpr i64 INF64 = 3000000000000000100; struct SetUpIO { SetUpIO() { #ifdef FAST_IO ios::sync_with_stdio(false); cin.tie(nullptr); #endif cout << fixed << setprecision(15); } } set_up_io; void scan(char &x) { cin >> x; } void scan(u32 &x) { cin >> x; } void scan(u64 &x) { cin >> x; } void scan(i32 &x) { cin >> x; } void scan(i64 &x) { cin >> x; } void scan(string &x) { cin >> x; } template <typename T> void scan(V<T> &x) { for (T &ele : x) { scan(ele); } } void read() {} template <typename Head, typename... Tail> void read(Head &head, Tail &...tail) { scan(head); read(tail...); } #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__); #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__); #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__); #define I32(...) \ i32 __VA_ARGS__; \ read(__VA_ARGS__); #define I64(...) \ i64 __VA_ARGS__; \ read(__VA_ARGS__); #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__); #define VEC(type, name, size) \ V<type> name(size); \ read(name); #define VVEC(type, name, size1, size2) \ VV<type> name(size1, V<type>(size2)); \ read(name); // ============ #ifdef DEBUGF #else #define DBG(...) (void)0 #endif // ============ #include <cassert> #include <vector> // ============ #include <algorithm> #include <limits> #include <utility> template <typename T> struct Add { using Value = T; static Value id() { return T(0); } static Value op(const Value &lhs, const Value &rhs) { return lhs + rhs; } static Value inv(const Value &x) { return -x; } }; template <typename T> struct Mul { using Value = T; static Value id() { return Value(1); } static Value op(const Value &lhs, const Value &rhs) { return lhs * rhs; } static Value inv(const Value &x) { return Value(1) / x; } }; template <typename T> struct Min { static_assert(std::numeric_limits<T>::is_specialized); using Value = T; static Value id() { return std::numeric_limits<T>::max(); } static Value op(const Value &lhs, const Value &rhs) { return std::min(lhs, rhs); } }; template <typename T> struct Max { static_assert(std::numeric_limits<T>::is_specialized); using Value = T; static Value id() { return std::numeric_limits<Value>::min(); } static Value op(const Value &lhs, const Value &rhs) { return std::max(lhs, rhs); } }; template <typename T> struct Xor { using Value = T; static Value id() { return T(0); } static Value op(const Value &lhs, const Value &rhs) { return lhs ^ rhs; } static Value inv(const Value &x) { return x; } }; template <typename Monoid> struct Reversible { using Value = std::pair<typename Monoid::Value, typename Monoid::Value>; static Value id() { return Value(Monoid::id(), Monoid::id()); } static Value op(const Value &v1, const Value &v2) { return Value(Monoid::op(v1.first, v2.first), Monoid::op(v2.second, v1.second)); } }; // ============ template <typename CommutativeGroup> class FenwickTree { public: using Value = typename CommutativeGroup::Value; private: std::vector<Value> data; public: FenwickTree(int n) : data(n, CommutativeGroup::id()) {} void add(int idx, const Value &x) { assert(idx >= 0 && idx < (int)data.size()); for (; idx < (int)data.size(); idx |= idx + 1) { data[idx] = CommutativeGroup::op(data[idx], x); } } Value sum(int r) const { assert(r >= 0 && r <= (int)data.size()); Value ret = CommutativeGroup::id(); for (; r > 0; r &= r - 1) { ret = CommutativeGroup::op(ret, data[r - 1]); } return ret; } Value sum(int l, int r) const { assert(l >= 0 && l <= r && r <= (int)data.size()); return CommutativeGroup::op(sum(r), CommutativeGroup::inv(sum(l))); } }; template <typename T> using FenwickTreeAdd = FenwickTree<Add<T>>; // ============ void solve() { I32(n, m, k); VEC(i32, s, k + 1); REP(i, k + 1) { --s[i]; } VV<i64> dist(n, V<i64>(n, INF64)); REP(i, n) { dist[i][i] = 0; } REP(i, m) { I32(a, b); I64(c); --a; --b; chmin(dist[a][b], c); chmin(dist[b][a], c); } REP(l, n) REP(i, n) REP(j, n) { chmin(dist[i][j], dist[i][l] + dist[l][j]); } FenwickTreeAdd<i64> fw(k); REP(i, k) { fw.add(i, dist[s[i]][s[i + 1]]); } I32(q); REP(qi, q) { I32(ty); if (ty == 1) { I32(x, y); --y; if (x != 0) { fw.add(x - 1, -dist[s[x - 1]][s[x]]); } if (x != k) { fw.add(x, -dist[s[x]][s[x + 1]]); } s[x] = y; if (x != 0) { fw.add(x - 1, dist[s[x - 1]][s[x]]); } if (x != k) { fw.add(x, dist[s[x]][s[x + 1]]); } } else { I32(x, y); cout << fw.sum(x, y) << '\n'; } } } int main() { i32 t = 1; // cin >> t; while (t--) { solve(); } }