結果

問題 No.2642 Don't cut line!
ユーザー nok0
提出日時 2024-02-19 21:42:19
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 174 ms / 4,000 ms
コード長 37,717 bytes
コンパイル時間 2,888 ms
コンパイル使用メモリ 232,772 KB
最終ジャッジ日時 2025-02-19 16:47:12
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 1 "/home/nok0/documents/programming/library/atcoder/dsu.hpp"
#include <algorithm>
#include <cassert>
#include <vector>
namespace atcoder {
// Implement (union by size) + (path compression)
// Reference:
// Zvi Galil and Giuseppe F. Italiano,
// Data structures and algorithms for disjoint set union problems
struct dsu {
public:
dsu() : _n(0) {}
explicit dsu(int n) : _n(n), parent_or_size(n, -1) {}
int merge(int a, int b) {
assert(0 <= a && a < _n);
assert(0 <= b && b < _n);
int x = leader(a), y = leader(b);
if (x == y) return x;
if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
parent_or_size[x] += parent_or_size[y];
parent_or_size[y] = x;
return x;
}
bool same(int a, int b) {
assert(0 <= a && a < _n);
assert(0 <= b && b < _n);
return leader(a) == leader(b);
}
int leader(int a) {
assert(0 <= a && a < _n);
if (parent_or_size[a] < 0) return a;
return parent_or_size[a] = leader(parent_or_size[a]);
}
int size(int a) {
assert(0 <= a && a < _n);
return -parent_or_size[leader(a)];
}
std::vector<std::vector<int>> groups() {
std::vector<int> leader_buf(_n), group_size(_n);
for (int i = 0; i < _n; i++) {
leader_buf[i] = leader(i);
group_size[leader_buf[i]]++;
}
std::vector<std::vector<int>> result(_n);
for (int i = 0; i < _n; i++) {
result[i].reserve(group_size[i]);
}
for (int i = 0; i < _n; i++) {
result[leader_buf[i]].push_back(i);
}
result.erase(
std::remove_if(result.begin(), result.end(),
[&](const std::vector<int>& v) { return v.empty(); }),
result.end());
return result;
}
private:
int _n;
// root node: -1 * component size
// otherwise: parent
std::vector<int> parent_or_size;
};
} // namespace atcoder
#line 1 "/home/nok0/documents/programming/library/atcoder/segtree.hpp"
#line 7 "/home/nok0/documents/programming/library/atcoder/segtree.hpp"
#line 1 "/home/nok0/documents/programming/library/atcoder/internal_bit.hpp"
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
constexpr int bsf_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#line 9 "/home/nok0/documents/programming/library/atcoder/segtree.hpp"
namespace atcoder {
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
public:
segtree() : segtree(0) {}
explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
explicit segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) const {
assert(0 <= p && p < _n);
return d[p + size];
}
S prod(int l, int r) const {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() const { return d[1]; }
template <bool (*f)(S)> int max_right(int l) const {
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) const {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)> int min_left(int r) const {
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) const {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};
} // namespace atcoder
#line 2 "/home/nok0/documents/programming/library/template/header.hpp"
#include <bits/stdc++.h>
#line 3 "/home/nok0/documents/programming/library/graph/graph.hpp"
#pragma region graph
template <class cost_type = long long>
class graph {
public:
struct edge {
public:
int from, to;
cost_type cost;
int id;
edge() = default;
edge(int from_, int to_, cost_type cost_ = 1, int id_ = -1) : from(from_), to(to_), cost(cost_), id(id_) {}
bool operator<(const edge &a) const { return cost < a.cost; }
bool operator>(const edge &a) const { return cost > a.cost; }
friend std::ostream &operator<<(std::ostream &s, const edge &a) {
s << '(' << a.from << " -> " << a.to << "), cost: " << a.cost << ", id: " << a.id;
return s;
}
};
private:
std::vector<std::vector<edge>> edges;
int next_edge_id = 0;
public:
inline const std::vector<edge> &operator[](int k) const { return edges[k]; }
inline std::vector<edge> &operator[](int k) { return edges[k]; }
int size() const { return int(edges.size()); }
void resize(const int n) { edges.resize(n); }
int edge_count() const { return next_edge_id; }
friend std::ostream &operator<<(std::ostream &s, const graph<cost_type> &g) {
for(const auto &adj : g.edges)
for(const auto &ed : adj) s << ed << '\n';
return s;
}
graph() = default;
graph(int n) : edges(n) {}
graph(int n, int e, bool weight = 0, bool directed = 0, int idx = 1) : edges(n) { input(e, weight, directed, idx); }
const cost_type INF = std::numeric_limits<cost_type>::max() / 3;
void input(int e = -1, bool weight = false, bool directed = false, int idx = 1) {
if(e == -1) e = size() - 1;
while(e--) {
int u, v;
std::cin >> u >> v;
cost_type cost = 1;
if(weight) std::cin >> cost;
add_edge(u, v, cost, directed, idx);
}
}
inline int add_edge(int u, int v, cost_type cost = 1, bool directed = false, int idx = 0) {
u -= idx, v -= idx;
edges[u].emplace_back(u, v, cost, next_edge_id);
if(!directed && u != v) edges[v].emplace_back(v, u, cost, next_edge_id);
return next_edge_id++;
}
// Ο(V+E)
std::vector<cost_type> bfs(int s) const {
std::vector<cost_type> dist(size(), INF);
std::queue<int> que;
dist[s] = 0;
que.push(s);
while(!que.empty()) {
int v = que.front();
que.pop();
for(auto &e : edges[v]) {
if(dist[e.to] != INF) continue;
dist[e.to] = dist[v] + e.cost;
que.push(e.to);
}
}
return dist;
}
// Ο(V+E)
// constraint: cost of each edge is zero or x (>= 0)
std::vector<cost_type> zero_one_bfs(int s) const {
std::vector<cost_type> dist(size(), INF);
std::deque<int> deq;
dist[s] = 0;
deq.push_back(s);
while(!deq.empty()) {
int v = deq.front();
deq.pop_front();
for(auto &e : edges[v]) {
if(dist[e.to] > dist[v] + e.cost) {
dist[e.to] = dist[v] + e.cost;
e.cost ? deq.push_back(e.to) : deq.push_front(e.to);
}
}
}
return dist;
}
// Ο((E+V) lg E)
// unreachable: INF
std::vector<cost_type> dijkstra(int s) const {
std::vector<cost_type> dist(size(), INF);
const auto compare = [](const std::pair<cost_type, int> &a, const std::pair<cost_type, int> &b) {
return a.first > b.first;
};
std::priority_queue<std::pair<cost_type, int>, std::vector<std::pair<cost_type, int>>, decltype(compare)> que{compare};
dist[s] = 0;
que.emplace(0, s);
while(!que.empty()) {
std::pair<cost_type, int> p = que.top();
que.pop();
int v = p.second;
if(dist[v] < p.first) continue;
for(auto &e : edges[v]) {
if(dist[e.to] > dist[v] + e.cost) {
dist[e.to] = dist[v] + e.cost;
que.emplace(dist[e.to], e.to);
}
}
}
return dist;
}
// Ο(VE)
// unreachable: INF
// reachable via negative cycle: -INF
std::vector<cost_type> bellman_ford(int s) const {
int n = size();
std::vector<cost_type> res(n, INF);
res[s] = 0;
for(int loop = 0; loop < n - 1; loop++) {
for(int v = 0; v < n; v++) {
if(res[v] == INF) continue;
for(auto &e : edges[v]) {
res[e.to] = std::min(res[e.to], res[v] + e.cost);
}
}
}
std::queue<int> que;
std::vector<int> chk(n);
for(int v = 0; v < n; v++) {
if(res[v] == INF) continue;
for(auto &e : edges[v]) {
if(res[e.to] > res[v] + e.cost and !chk[e.to]) {
que.push(e.to);
chk[e.to] = 1;
}
}
}
while(!que.empty()) {
int now = que.front();
que.pop();
for(auto &e : edges[now]) {
if(!chk[e.to]) {
chk[e.to] = 1;
que.push(e.to);
}
}
}
for(int i = 0; i < n; i++)
if(chk[i]) res[i] = -INF;
return res;
}
// Ο(V^3)
std::vector<std::vector<cost_type>> warshall_floyd() const {
const int n = size();
std::vector<std::vector<cost_type>> dist(n, std::vector<cost_type>(n, INF));
for(int i = 0; i < n; i++) dist[i][i] = 0;
for(int i = 0; i < n; i++)
for(auto &e : edges[i]) dist[i][e.to] = std::min(dist[i][e.to], e.cost);
for(int k = 0; k < n; k++)
for(int i = 0; i < n; i++) {
if(dist[i][k] == INF) continue;
for(int j = 0; j < n; j++) {
if(dist[k][j] == INF) continue;
dist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]);
}
}
return dist;
}
// Ο(V) (using DFS)
// if a cycle exists, return {}
std::vector<int> topological_sort() const {
std::vector<int> res;
std::vector<int> used(size(), 0);
bool not_DAG = false;
auto dfs = [&](auto self, int k) -> void {
if(not_DAG) return;
if(used[k]) {
if(used[k] == 1) not_DAG = true;
return;
}
used[k] = 1;
for(auto &e : edges[k]) self(self, e.to);
used[k] = 2;
res.push_back(k);
};
for(int i = 0; i < size(); i++) dfs(dfs, i);
if(not_DAG) return std::vector<int>{};
std::reverse(res.begin(), res.end());
return res;
}
bool is_dag() const { return !topological_sort().empty(); }
// Ο(V)
// array of the distance to the most distant vertex
// constraint: the graph is a tree
std::vector<cost_type> height() const {
auto vec1 = bfs(0);
int v1 = -1, v2 = -1;
cost_type dia = -1;
for(int i = 0; i < int(size()); i++)
if(dia < vec1[i]) dia = vec1[i], v1 = i;
vec1 = bfs(v1);
dia = -1;
for(int i = 0; i < int(size()); i++)
if(dia < vec1[i]) dia = vec1[i], v2 = i;
auto vec2 = bfs(v2);
for(int i = 0; i < int(size()); i++) {
if(vec1[i] < vec2[i]) vec1[i] = vec2[i];
}
return vec1;
}
// O(V+E)
// vector<(int)(0 or 1)>
// if it is not bipartite, return {}
std::vector<int> bipartite_grouping() const {
std::vector<int> colors(size(), -1);
auto dfs = [&](auto self, int now, int col) -> bool {
colors[now] = col;
for(auto &e : edges[now]) {
if(col == colors[e.to]) return false;
if(colors[e.to] == -1 and !self(self, e.to, !col)) return false;
}
return true;
};
for(int i = 0; i < int(size()); i++)
if(colors[i] == -1 and !dfs(dfs, i, 0)) return std::vector<int>{};
return colors;
}
bool is_bipartite() const { return !bipartite_grouping().empty(); }
// Ο(V+E)
// (v1, v2, diameter)
std::tuple<int, int, cost_type> diameter() {
std::vector<cost_type> dist = bfs(0);
auto it = std::max_element(dist.begin(), dist.end());
const int v = it - dist.begin();
dist = bfs(v);
it = std::max_element(dist.begin(), dist.end());
return std::make_tuple(v, int(it - dist.begin()), *it);
}
// Ο(V+E)
std::vector<int> subtree_size(const int root) {
const int n = size();
std::vector<int> ret(n, 1);
auto dfs = [&](auto self, int now, int p = -1) -> void {
for(const auto &e : (*this)[now]) {
if(e.to == p) continue;
self(self, e.to, now);
ret[now] += ret[e.to];
}
};
dfs(dfs, root);
return ret;
}
// Ο(ElgE)
cost_type prim() const {
cost_type res = 0;
std::priority_queue<edge, std::vector<edge>, std::greater<edge>> que;
for(auto &e : edges[0]) que.push(e);
std::vector<int> chk(size());
chk[0] = 1;
int cnt = 1;
while(cnt < size()) {
auto e = que.top();
que.pop();
if(chk[e.to]) continue;
cnt++;
res += e.cost;
chk[e.to] = 1;
for(auto &e2 : edges[e.to]) que.push(e2);
}
return res;
}
// Ο(ElgE)
cost_type kruskal() const {
std::vector<std::tuple<int, int, cost_type>> eds;
for(const auto &adj : edges)
for(const auto &ed : adj) eds.emplace_back(ed.from, ed.to, ed.cost);
std::sort(eds.begin(), eds.end(), [](const std::tuple<int, int, cost_type> &a, const std::tuple<int, int, cost_type> &b) {
return std::get<2>(a) < std::get<2>(b);
});
std::vector<int> uf_data(size(), -1);
auto root = [&uf_data](auto self, int x) -> int {
if(uf_data[x] < 0) return x;
return uf_data[x] = self(self, uf_data[x]);
};
auto unite = [&uf_data, &root](int u, int v) -> bool {
u = root(root, u), v = root(root, v);
if(u == v) return false;
if(uf_data[u] > uf_data[v]) std::swap(u, v);
uf_data[u] += uf_data[v];
uf_data[v] = u;
return true;
};
cost_type ret = 0;
for(auto &e : eds)
if(unite(std::get<0>(e), std::get<1>(e))) ret += std::get<2>(e);
return ret;
}
// O(V)
std::vector<int> centroid() const {
std::vector<int> centroid, sz(size());
auto dfs = [&](auto self, int now, int per) -> void {
sz[now] = 1;
bool is_centroid = true;
for(auto &e : edges[now]) {
if(e.to != per) {
self(self, e.to, now);
sz[now] += sz[e.to];
if(sz[e.to] > size() / 2) is_centroid = false;
}
}
if(size() - sz[now] > size() / 2) is_centroid = false;
if(is_centroid) centroid.push_back(now);
};
dfs(dfs, 0, -1);
return centroid;
}
// O(V+E)
// bridge: (s, t) (s < t);
std::pair<std::vector<std::pair<int, int>>, std::vector<int>> bridges_and_articulations() const {
std::vector<int> order(size(), -1), low(size()), articulation;
int order_next = 0;
std::vector<std::pair<int, int>> bridge;
auto dfs = [&](auto self, int now, int par = -1) -> void {
low[now] = order[now] = order_next++;
bool is_articulation = false;
int cnt = 0;
for(auto &ed : edges[now]) {
int &nxt = ed.to;
if(nxt == par) continue;
if(order[nxt] == -1) {
cnt++;
self(self, nxt, now);
if(order[now] < low[nxt]) bridge.push_back(std::minmax(now, nxt));
if(order[now] <= low[nxt]) is_articulation = true;
low[now] = std::min(low[now], low[nxt]);
} else if(order[now] > order[nxt]) {
low[now] = std::min(low[now], order[nxt]);
}
}
if(par == -1 and cnt < 2) is_articulation = false;
if(is_articulation) articulation.push_back(now);
return;
};
for(int i = 0; i < (int)size(); i++)
if(order[i] == -1) dfs(dfs, i);
return std::make_pair(bridge, articulation);
}
// Ο(V+E)
// directed graph from root to leaf
graph root_to_leaf(int root = 0) const {
graph res(size());
std::vector<int> chk(size(), 0);
chk[root] = 1;
auto dfs = [&](auto self, int now) -> void {
for(auto &e : edges[now]) {
if(chk[e.to] == 1) continue;
chk[e.to] = 1;
res.add_edge(now, e.to, e.cost, 1, 0);
self(self, e.to);
}
};
dfs(dfs, root);
return res;
}
// Ο(V+E)
// directed graph from leaf to root
graph leaf_to_root(int root = 0) const {
graph res(size());
std::vector<int> chk(size(), 0);
chk[root] = 1;
auto dfs = [&](auto self, int now) -> void {
for(auto &e : edges[now]) {
if(chk[e.to] == 1) continue;
chk[e.to] = 1;
res.add_edge(e.to, now, e.cost, 1, 0);
self(self, e.to);
}
};
dfs(dfs, root);
return res;
}
// cost_type Chu_Liu_Edmonds(int root = 0) {}
};
#pragma endregion
#line 3 "/home/nok0/documents/programming/library/graph/hld.hpp"
template <class cost_type>
struct heavy_light_decomposition {
public:
std::vector<int> sz, in, out, head, rev, par;
private:
graph<cost_type> &g;
void dfs_sz(int v, int p = -1) {
par[v] = p;
if(!g[v].empty() and g[v].front().to == p) std::swap(g[v].front(), g[v].back());
for(auto &e : g[v]) {
if(e.to == p) continue;
dfs_sz(e.to, v);
sz[v] += sz[e.to];
if(sz[g[v].front().to] < sz[e.to]) std::swap(g[v].front(), e);
}
}
void dfs_hld(int v, int &t, int p = -1) {
in[v] = t++;
rev[in[v]] = v;
for(auto &e : g[v]) {
if(e.to == p) continue;
head[e.to] = (g[v].front().to == e.to ? head[v] : e.to);
dfs_hld(e.to, t, v);
}
out[v] = t;
}
void build(int root = 0) {
dfs_sz(root);
int t = 0;
head[root] = root;
dfs_hld(root, t);
}
public:
heavy_light_decomposition(graph<cost_type> &g_, int root = 0) : g(g_) {
int n = g.size();
sz.resize(n, 1);
in.resize(n);
out.resize(n);
head.resize(n);
rev.resize(n);
par.resize(n);
build(root);
}
int level_ancestor(int v, int level) {
while(true) {
int u = head[v];
if(in[v] - level >= in[u]) return rev[in[v] - level];
level -= in[v] - in[u] + 1;
v = par[u];
}
}
int lowest_common_ancestor(int u, int v) {
for(;; v = par[head[v]]) {
if(in[u] > in[v]) std::swap(u, v);
if(head[u] == head[v]) return u;
}
}
// u, v: vertex, unit: unit, q: query on a path, f: binary operation ((T, T) -> T)
template <typename T, typename Q, typename F>
T query(int u, int v, const T &unit, const Q &q, const F &f, bool edge = false) {
T l = unit, r = unit;
for(;; v = par[head[v]]) {
if(in[u] > in[v]) std::swap(u, v), std::swap(l, r);
if(head[u] == head[v]) break;
l = f(q(in[head[v]], in[v] + 1), l);
}
return f(f(q(in[u] + edge, in[v] + 1), l), r);
}
// u, v: vertex, q: update query
template <typename Q>
void add(int u, int v, const Q &q, bool edge = false) {
for(;; v = par[head[v]]) {
if(in[u] > in[v]) std::swap(u, v);
if(head[u] == head[v]) break;
q(in[head[v]], in[v] + 1);
}
q(in[u] + edge, in[v] + 1);
}
std::pair<int, int> subtree(int v, bool edge = false) { return std::pair<int, int>(in[v] + edge, out[v]); }
};
#line 2 "/home/nok0/documents/programming/library/graph/tree_doubling.hpp"
template <class cost_type>
struct tree_doubling {
private:
std::vector<cost_type> dist;
std::vector<int> depth;
std::vector<std::vector<int>> parent;
int max_jump = 1;
void build() {
for(int i = 0; i < max_jump - 1; i++) {
for(int v = 0; v < (int)dist.size(); v++) {
if(parent[i][v] == -1)
parent[i + 1][v] = -1;
else
parent[i + 1][v] = parent[i][parent[i][v]];
}
}
}
public:
tree_doubling() = default;
tree_doubling(const graph<cost_type> &g, const int root = 0) : dist(g.size()), depth(g.size()) {
int n = g.size();
while((1 << max_jump) < n) max_jump++;
parent.assign(max_jump, std::vector<int>(n, -1));
auto dfs = [&](auto self, int now, int per, int d, cost_type cost) -> void {
parent[0][now] = per;
depth[now] = d;
dist[now] = cost;
for(auto &e : g[now])
if(e.to != per) self(self, e.to, now, d + 1, cost + e.cost);
};
dfs(dfs, root, -1, 0, 0LL);
build();
}
int lowest_common_ancestor(int u, int v) {
if(depth[u] < depth[v]) std::swap(u, v);
int k = int(parent.size());
for(int i = 0; i < k; i++)
if((depth[u] - depth[v]) >> i & 1) u = parent[i][u];
if(u == v) return u;
for(int i = k - 1; i >= 0; i--)
if(parent[i][u] != parent[i][v]) u = parent[i][u], v = parent[i][v];
return parent[0][u];
}
cost_type length_of_path(const int u, const int v) { return dist[u] + dist[v] - dist[lowest_common_ancestor(u, v)] * 2; }
int level_ancestor(int v, int level) {
assert(level >= 0);
for(int jump = 0; jump < max_jump and level; jump++) {
if(level & 1) v = parent[jump][v];
level >>= 1;
}
return v;
}
};
#line 3 "/home/nok0/documents/programming/library/template/def_const.hpp"
const int inf = 1000000000;
const long long INF = 1000000000000000000ll;
#line 4 "/home/nok0/documents/programming/library/template/debug.hpp"
namespace viewer {
void view(const long long &e) {
if(e == INF)
std::cerr << "INF";
else if(e == -INF)
std::cerr << "-INF";
else
std::cerr << e;
}
void view(const int &e) {
if(e == inf)
std::cerr << "inf";
else if(e == -inf)
std::cerr << "-inf";
else
std::cerr << e;
}
template <typename T>
void view(const T &e) {
std::cerr << e;
}
template <typename T, typename U>
void view(const std::pair<T, U> &p) {
std::cerr << "(";
view(p.first);
std::cerr << ", ";
view(p.second);
std::cerr << ")";
}
template <class T0, class T1, class T2>
void view(const std::tuple<T0, T1, T2> &p) {
std::cerr << "(";
view(std::get<0>(p));
std::cerr << ", ";
view(std::get<1>(p));
std::cerr << ", ";
view(std::get<2>(p));
std::cerr << ")";
}
template <class T0, class T1, class T2, class T3>
void view(const std::tuple<T0, T1, T2, T3> &p) {
std::cerr << "(";
view(std::get<0>(p));
std::cerr << ", ";
view(std::get<1>(p));
std::cerr << ", ";
view(std::get<2>(p));
std::cerr << ", ";
view(std::get<3>(p));
std::cerr << ")";
}
template <typename T>
void view(const std::set<T> &s) {
if(s.empty()) {
std::cerr << "{ }";
return;
}
std::cerr << "{ ";
for(auto &t : s) {
view(t);
std::cerr << ", ";
}
std::cerr << "\b\b }";
}
template <typename T>
void view(const std::unordered_set<T> &s) {
if(s.empty()) {
std::cerr << "{ }";
return;
}
std::cerr << "{ ";
for(auto &t : s) {
view(t);
std::cerr << ", ";
}
std::cerr << "\b\b }";
}
template <typename T>
void view(const std::multiset<T> &s) {
if(s.empty()) {
std::cerr << "{ }";
return;
}
std::cerr << "{ ";
for(auto &t : s) {
view(t);
std::cerr << ", ";
}
std::cerr << "\b\b }";
}
template <typename T>
void view(const std::unordered_multiset<T> &s) {
if(s.empty()) {
std::cerr << "{ }";
return;
}
std::cerr << "{ ";
for(auto &t : s) {
view(t);
std::cerr << ", ";
}
std::cerr << "\b\b }";
}
template <typename T>
void view(const std::vector<T> &v) {
if(v.empty()) {
std::cerr << "{ }";
return;
}
std::cerr << "{ ";
for(const auto &e : v) {
view(e);
std::cerr << ", ";
}
std::cerr << "\b\b }";
}
template <typename T, std::size_t ary_size>
void view(const std::array<T, ary_size> &v) {
if(v.empty()) {
std::cerr << "{ }";
return;
}
std::cerr << "{ ";
for(const auto &e : v) {
view(e);
std::cerr << ", ";
}
std::cerr << "\b\b }";
}
template <typename T>
void view(const std::vector<std::vector<T>> &vv) {
std::cerr << "{\n";
for(const auto &v : vv) {
std::cerr << "\t";
view(v);
std::cerr << '\n';
}
std::cerr << "}";
}
template <typename T, typename U>
void view(const std::vector<std::pair<T, U>> &v) {
std::cerr << "{\n";
for(const auto &c : v) {
std::cerr << "\t(";
view(c.first);
std::cerr << ", ";
view(c.second);
std::cerr << ")\n";
}
std::cerr << "}";
}
template <class T0, class T1, class T2>
void view(const std::vector<std::tuple<T0, T1, T2>> &v) {
if(v.empty()) {
std::cerr << "{ }";
return;
}
std::cerr << '{';
for(const auto &t : v) {
std::cerr << "\n\t";
view(t);
std::cerr << ",";
}
std::cerr << "\n}";
}
template <class T0, class T1, class T2, class T3>
void view(const std::vector<std::tuple<T0, T1, T2, T3>> &v) {
if(v.empty()) {
std::cerr << "{ }";
return;
}
std::cerr << '{';
for(const auto &t : v) {
std::cerr << "\n\t";
view(t);
std::cerr << ",";
}
std::cerr << "\n}";
}
template <typename T, typename U>
void view(const std::map<T, U> &m) {
std::cerr << "{\n";
for(const auto &t : m) {
std::cerr << "\t[";
view(t.first);
std::cerr << "] : ";
view(t.second);
std::cerr << '\n';
}
std::cerr << "}";
}
template <typename T, typename U>
void view(const std::unordered_map<T, U> &m) {
std::cerr << "{\n";
for(const auto &t : m) {
std::cerr << "\t[";
view(t.first);
std::cerr << "] : ";
view(t.second);
std::cerr << '\n';
}
std::cerr << "}";
}
} // namespace viewer
// when compiling : g++ foo.cpp -DLOCAL
#ifdef LOCAL
void debug_out() {}
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
viewer::view(H);
std::cerr << ", ";
debug_out(T...);
}
#define debug(...) \
do { \
std::cerr << __LINE__ << " [" << #__VA_ARGS__ << "] : ["; \
debug_out(__VA_ARGS__); \
std::cerr << "\b\b]\n"; \
} while(0)
#define dump(x) \
do { \
std::cerr << __LINE__ << " " << #x << " : "; \
viewer::view(x); \
std::cerr << '\n'; \
} while(0)
#else
#define debug(...) (void(0))
#define dump(x) (void(0))
#endif
#line 3 "/home/nok0/documents/programming/library/template/def_name.hpp"
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define popcnt(x) __builtin_popcountll(x)
template <class T = int>
using V = std::vector<T>;
template <class T = int>
using VV = std::vector<std::vector<T>>;
template <class T>
using pqup = std::priority_queue<T, std::vector<T>, std::greater<T>>;
using ll = long long;
using ld = long double;
using int128 = __int128_t;
using pii = std::pair<int, int>;
using pll = std::pair<long long, long long>;
#line 3 "/home/nok0/documents/programming/library/template/fast_io.hpp"
struct fast_io {
fast_io() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(15);
}
} fast_io_;
#line 3 "/home/nok0/documents/programming/library/template/input.hpp"
template <class T, class U>
std::istream &operator>>(std::istream &is, std::pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <class T>
std::istream &operator>>(std::istream &is, std::vector<T> &v) {
for(T &i : v) is >> i;
return is;
}
std::istream &operator>>(std::istream &is, __int128_t &a) {
std::string s;
is >> s;
__int128_t ret = 0;
for(int i = 0; i < (int)s.length(); i++)
if('0' <= s[i] and s[i] <= '9')
ret = 10 * ret + s[i] - '0';
a = ret * (s[0] == '-' ? -1 : 1);
return is;
}
namespace scanner {
void scan(int &a) { std::cin >> a; }
void scan(long long &a) { std::cin >> a; }
void scan(std::string &a) { std::cin >> a; }
void scan(char &a) { std::cin >> a; }
void scan(char a[]) { std::ignore = std::scanf("%s", a); }
void scan(double &a) { std::cin >> a; }
void scan(long double &a) { std::cin >> a; }
template <class T, class U>
void scan(std::pair<T, U> &p) { std::cin >> p; }
template <class T>
void scan(std::vector<T> &a) { std::cin >> a; }
void INPUT() {}
template <class Head, class... Tail>
void INPUT(Head &head, Tail &...tail) {
scan(head);
INPUT(tail...);
}
} // namespace scanner
#define VEC(type, name, size) \
std::vector<type> name(size); \
scanner::INPUT(name)
#define VVEC(type, name, h, w) \
std::vector<std::vector<type>> name(h, std::vector<type>(w)); \
scanner::INPUT(name)
#define INT(...) \
int __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
#define LL(...) \
long long __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
#define STR(...) \
std::string __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
#define DOUBLE(...) \
double __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
#define LD(...) \
long double __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
#line 3 "/home/nok0/documents/programming/library/template/math.hpp"
template <class T, class U>
inline bool chmin(T &a, const U &b) { return a > b ? a = b, true : false; }
template <class T, class U>
inline bool chmax(T &a, const U &b) { return a < b ? a = b, true : false; }
template <class T>
T divup(T x, T y) { return (x + y - 1) / y; }
template <class T>
T POW(T a, long long n) {
T ret = 1;
while(n) {
if(n & 1) ret *= a;
a *= a;
n >>= 1;
}
return ret;
}
long long POW(long long a, long long n, const int mod) {
long long ret = 1;
a = (a % mod + mod) % mod;
while(n) {
if(n & 1) (ret *= a) %= mod;
(a *= a) %= mod;
n >>= 1;
}
return ret;
}
template <class T, class F>
T bin_search(T ok, T ng, const F &f) {
while(abs(ok - ng) > 1) {
T mid = (ok + ng) >> 1;
(f(mid) ? ok : ng) = mid;
}
return ok;
}
template <class T, class F>
T bin_search(T ok, T ng, const F &f, int loop) {
for(int i = 0; i < loop; i++) {
T mid = (ok + ng) / 2;
(f(mid) ? ok : ng) = mid;
}
return ok;
}
#line 3 "/home/nok0/documents/programming/library/template/output.hpp"
template <class T, class U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <class T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &a) {
for(int i = 0; i < int(a.size()); ++i) {
if(i) os << " ";
os << a[i];
}
return os;
}
std::ostream &operator<<(std::ostream &dest, __int128_t &value) {
std::ostream::sentry s(dest);
if(s) {
__uint128_t tmp = value < 0 ? -value : value;
char buffer[128];
char *d = std::end(buffer);
do {
--d;
*d = "0123456789"[tmp % 10];
tmp /= 10;
} while(tmp != 0);
if(value < 0) {
--d;
*d = '-';
}
int len = std::end(buffer) - d;
if(dest.rdbuf()->sputn(d, len) != len) {
dest.setstate(std::ios_base::badbit);
}
}
return dest;
}
template <class T>
void print(const T a) { std::cout << a << '\n'; }
template <class Head, class... Tail>
void print(Head H, Tail... T) {
std::cout << H << ' ';
print(T...);
}
template <class T>
void println(const T a) { std::cout << a << '\n'; }
template <class T>
void println(const std::vector<T> &a) {
for(const auto &v : a)
std::cout << v << '\n';
}
template <class Head, class... Tail>
void println(Head H, Tail... T) {
std::cout << H << '\n';
println(T...);
}
void Yes(const bool b = true) { std::cout << (b ? "Yes\n" : "No\n"); }
void No() { std::cout << "No\n"; }
void YES(const bool b = true) { std::cout << (b ? "YES\n" : "NO\n"); }
void NO() { std::cout << "NO\n"; }
#line 2 "/home/nok0/documents/programming/library/template/rep.hpp"
#define foa(v, a) for (auto &v : a)
#define repname(a, b, c, d, e, ...) e
#define rep(...) repname(__VA_ARGS__, rep3, rep2, rep1, rep0)(__VA_ARGS__)
#define rep0(x) for (int rep_counter = 0; rep_counter < (x); ++rep_counter)
#define rep1(i, x) for (int i = 0; i < (x); ++i)
#define rep2(i, l, r) for (int i = (l); i < (r); ++i)
#define rep3(i, l, r, c) for (int i = (l); i < (r); i += (c))
#define repsname(a, b, c, ...) c
#define reps(...) repsname(__VA_ARGS__, reps1, reps0)(__VA_ARGS__)
#define reps0(x) for (int reps_counter = 1; reps_counter <= (x); ++reps_counter)
#define reps1(i, x) for (int i = 1; i <= (x); ++i)
#define rrepname(a, b, c, ...) c
#define rrep(...) rrepname(__VA_ARGS__, rrep1, rrep0)(__VA_ARGS__)
#define rrep0(x) for (int rrep_counter = (x)-1; rrep_counter >= 0; --rrep_counter)
#define rrep1(i, x) for (int i = (x)-1; i >= 0; --i)
#line 3 "/home/nok0/documents/programming/library/template/string_converter.hpp"
struct string_converter {
char start = 0;
char type(const char &c) const { return (islower(c) ? 'a' : isupper(c) ? 'A' :
isdigit(c) ? '0' :
0); }
int convert(const char &c) {
if(!start) start = type(c);
return c - start;
}
int convert(const char &c, const std::string &chars) { return chars.find(c); }
template <typename T>
auto convert(const T &v) {
std::vector<decltype(convert(v[0]))> ret;
ret.reserve(size(v));
for(auto &&e : v) ret.emplace_back(convert(e));
return ret;
}
template <typename T>
auto convert(const T &v, const std::string &chars) {
std::vector<decltype(convert(v[0], chars))> ret;
ret.reserve(size(v));
for(auto &&e : v) ret.emplace_back(convert(e, chars));
return ret;
}
int operator()(const char &v, char s = 0) {
start = s;
return convert(v);
}
int operator()(const char &v, const std::string &chars) { return convert(v, chars); }
template <typename T>
auto operator()(const T &v, char s = 0) {
start = s;
return convert(v);
}
template <typename T>
auto operator()(const T &v, const std::string &chars) { return convert(v, chars); }
} toint;
#line 3 "/home/nok0/documents/programming/library/template/vector.hpp"
template <class T>
int lb(const std::vector<T> &a, const T x) { return std::distance((a).begin(), std::lower_bound((a).begin(), (a).end(), (x))); }
template <class T>
int ub(const std::vector<T> &a, const T x) { return std::distance((a).begin(), std::upper_bound((a).begin(), (a).end(), (x))); }
template <class T>
void UNIQUE(std::vector<T> &a) {
std::sort(a.begin(), a.end());
a.erase(std::unique(a.begin(), a.end()), a.end());
}
template <class T>
std::vector<T> press(std::vector<T> &a) {
auto res = a;
UNIQUE(res);
for(auto &v : a)
v = lb(res, v);
return res;
}
#define SORTname(a, b, c, ...) c
#define SORT(...) SORTname(__VA_ARGS__, SORT1, SORT0, ...)(__VA_ARGS__)
#define SORT0(a) std::sort((a).begin(), (a).end())
#define SORT1(a, c) std::sort((a).begin(), (a).end(), [](const auto x, const auto y) { return x c y; })
template <class T>
void ADD(std::vector<T> &a, const T x = 1) {
for(auto &v : a) v += x;
}
template <class T>
void SUB(std::vector<T> &a, const T x = 1) {
for(auto &v : a) v -= x;
}
template <class T>
struct cum_vector {
public:
cum_vector() = default;
template <class U>
cum_vector(const std::vector<U> &vec) : cum((int)vec.size() + 1) {
for(int i = 0; i < (int)vec.size(); i++)
cum[i + 1] = cum[i] + vec[i];
}
T prod(int l, int r) {
return cum[r] - cum[l];
}
private:
std::vector<T> cum;
};
std::vector<std::pair<char, int>> rle(const std::string &s) {
const int n = s.size();
std::vector<std::pair<char, int>> ret;
ret.reserve(n);
for(int l = 0; l < n;) {
int r = l + 1;
for(; r < n and s[l] == s[r]; r++) {}
ret.emplace_back(s[l], r - l);
l = r;
}
return ret;
}
template <class T>
std::vector<std::pair<T, int>> rle(const std::vector<T> &v) {
const int n = v.size();
std::vector<std::pair<T, int>> ret;
ret.reserve(n);
for(int l = 0; l < n;) {
int r = l + 1;
for(; r < n and v[l] == v[r]; r++) {}
ret.emplace_back(v[l], r - l);
l = r;
}
return ret;
}
std::vector<int> iota(int n) {
std::vector<int> p(n);
std::iota(p.begin(), p.end(), 0);
return p;
}
#line 12 "/home/nok0/documents/programming/library/template/all"
using namespace std;
#line 7 "a.cpp"
using S = ll;
S op(S x, S y) {
return max(x, y);
}
S e() {
return 0ll;
}
void main_();
int main() {
int t = 1;
while(t--) main_();
}
using T = tuple<int, int, int, int>;
void main_() {
LL(n, k, c);
V<T> es;
rep(i, k) {
INT(u, v, w, p);
--u, --v;
es.pb({u, v, w, p});
}
auto f = [&](T x, T y) {
return get<2>(x) < get<2>(y);
};
sort(all(es), f);
atcoder::dsu uf(n);
graph g(n);
ll wei = 0;
ll ans = 0;
V<T> oth;
for(auto [u, v, w, p] : es) {
if(!uf.same(u, v)) {
uf.merge(u, v);
g.add_edge(u, v, w);
wei += w;
chmax(ans, p);
} else {
oth.push_back({u, v, w, p});
}
}
if(wei > c) {
print(-1);
return;
}
auto h = g.root_to_leaf(0);
heavy_light_decomposition hld(g, 0);
atcoder::segtree<S, op, e> seg(n);
rep(i, n) {
for(auto e : h[i]) {
seg.set(hld.in[e.to], e.cost);
}
}
for(auto [u, v, w, p] : oth) {
if(ans >= p) continue;
// uso
auto len = hld.query(
u, v, 0, [&](int l, int r) { return seg.prod(l, r); }, [](ll x, ll y) { return max(x, y); }, 1);
debug(len);
if(wei - len + w <= c) chmax(ans, p);
}
print(ans);
// hoge  
//
//
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0