結果

問題 No.2642 Don't cut line!
ユーザー nok0nok0
提出日時 2024-02-19 21:42:19
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 206 ms / 4,000 ms
コード長 37,717 bytes
コンパイル時間 3,314 ms
コンパイル使用メモリ 242,032 KB
実行使用メモリ 35,428 KB
最終ジャッジ日時 2024-09-29 03:32:03
合計ジャッジ時間 7,772 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 185 ms
34,536 KB
testcase_02 AC 195 ms
35,428 KB
testcase_03 AC 206 ms
31,464 KB
testcase_04 AC 198 ms
31,048 KB
testcase_05 AC 199 ms
32,744 KB
testcase_06 AC 47 ms
7,656 KB
testcase_07 AC 48 ms
7,876 KB
testcase_08 AC 48 ms
7,780 KB
testcase_09 AC 48 ms
7,784 KB
testcase_10 AC 48 ms
7,784 KB
testcase_11 AC 48 ms
7,788 KB
testcase_12 AC 49 ms
7,784 KB
testcase_13 AC 47 ms
7,784 KB
testcase_14 AC 48 ms
7,912 KB
testcase_15 AC 49 ms
7,784 KB
testcase_16 AC 90 ms
14,152 KB
testcase_17 AC 168 ms
29,032 KB
testcase_18 AC 181 ms
28,392 KB
testcase_19 AC 121 ms
23,524 KB
testcase_20 AC 55 ms
12,136 KB
testcase_21 AC 48 ms
8,808 KB
testcase_22 AC 62 ms
11,496 KB
testcase_23 AC 194 ms
32,104 KB
testcase_24 AC 64 ms
13,540 KB
testcase_25 AC 64 ms
12,904 KB
testcase_26 AC 52 ms
8,864 KB
testcase_27 AC 102 ms
22,504 KB
testcase_28 AC 173 ms
29,804 KB
testcase_29 AC 54 ms
9,872 KB
testcase_30 AC 61 ms
11,884 KB
testcase_31 AC 148 ms
25,432 KB
testcase_32 AC 58 ms
10,984 KB
testcase_33 AC 2 ms
6,820 KB
testcase_34 AC 2 ms
6,820 KB
testcase_35 AC 2 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "/home/nok0/documents/programming/library/atcoder/dsu.hpp"



#include <algorithm>
#include <cassert>
#include <vector>

namespace atcoder {

// Implement (union by size) + (path compression)
// Reference:
// Zvi Galil and Giuseppe F. Italiano,
// Data structures and algorithms for disjoint set union problems
struct dsu {
  public:
    dsu() : _n(0) {}
    explicit dsu(int n) : _n(n), parent_or_size(n, -1) {}

    int merge(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool same(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
            std::remove_if(result.begin(), result.end(),
                           [&](const std::vector<int>& v) { return v.empty(); }),
            result.end());
        return result;
    }

  private:
    int _n;
    // root node: -1 * component size
    // otherwise: parent
    std::vector<int> parent_or_size;
};

}  // namespace atcoder


#line 1 "/home/nok0/documents/programming/library/atcoder/segtree.hpp"



#line 7 "/home/nok0/documents/programming/library/atcoder/segtree.hpp"

#line 1 "/home/nok0/documents/programming/library/atcoder/internal_bit.hpp"



#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
constexpr int bsf_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder


#line 9 "/home/nok0/documents/programming/library/atcoder/segtree.hpp"

namespace atcoder {

template <class S, S (*op)(S, S), S (*e)()> struct segtree {
  public:
    segtree() : segtree(0) {}
    explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
    explicit segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) const {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S prod(int l, int r) const {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() const { return d[1]; }

    template <bool (*f)(S)> int max_right(int l) const {
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) const {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) const {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) const {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

}  // namespace atcoder


#line 2 "/home/nok0/documents/programming/library/template/header.hpp"
#include <bits/stdc++.h>
#line 3 "/home/nok0/documents/programming/library/graph/graph.hpp"
#pragma region graph

template <class cost_type = long long>
class graph {
   public:
	struct edge {
	   public:
		int from, to;
		cost_type cost;
		int id;
		edge() = default;
		edge(int from_, int to_, cost_type cost_ = 1, int id_ = -1) : from(from_), to(to_), cost(cost_), id(id_) {}
		bool operator<(const edge &a) const { return cost < a.cost; }
		bool operator>(const edge &a) const { return cost > a.cost; }
		friend std::ostream &operator<<(std::ostream &s, const edge &a) {
			s << '(' << a.from << " -> " << a.to << "), cost: " << a.cost << ", id: " << a.id;
			return s;
		}
	};

   private:
	std::vector<std::vector<edge>> edges;
	int next_edge_id = 0;

   public:
	inline const std::vector<edge> &operator[](int k) const { return edges[k]; }
	inline std::vector<edge> &operator[](int k) { return edges[k]; }

	int size() const { return int(edges.size()); }
	void resize(const int n) { edges.resize(n); }
	int edge_count() const { return next_edge_id; }

	friend std::ostream &operator<<(std::ostream &s, const graph<cost_type> &g) {
		for(const auto &adj : g.edges)
			for(const auto &ed : adj) s << ed << '\n';
		return s;
	}

	graph() = default;
	graph(int n) : edges(n) {}
	graph(int n, int e, bool weight = 0, bool directed = 0, int idx = 1) : edges(n) { input(e, weight, directed, idx); }
	const cost_type INF = std::numeric_limits<cost_type>::max() / 3;

	void input(int e = -1, bool weight = false, bool directed = false, int idx = 1) {
		if(e == -1) e = size() - 1;
		while(e--) {
			int u, v;
			std::cin >> u >> v;
			cost_type cost = 1;
			if(weight) std::cin >> cost;
			add_edge(u, v, cost, directed, idx);
		}
	}

	inline int add_edge(int u, int v, cost_type cost = 1, bool directed = false, int idx = 0) {
		u -= idx, v -= idx;
		edges[u].emplace_back(u, v, cost, next_edge_id);
		if(!directed && u != v) edges[v].emplace_back(v, u, cost, next_edge_id);
		return next_edge_id++;
	}

	// Ο(V+E)
	std::vector<cost_type> bfs(int s) const {
		std::vector<cost_type> dist(size(), INF);
		std::queue<int> que;
		dist[s] = 0;
		que.push(s);
		while(!que.empty()) {
			int v = que.front();
			que.pop();
			for(auto &e : edges[v]) {
				if(dist[e.to] != INF) continue;
				dist[e.to] = dist[v] + e.cost;
				que.push(e.to);
			}
		}
		return dist;
	}

	// Ο(V+E)
	// constraint: cost of each edge is zero or x (>= 0)
	std::vector<cost_type> zero_one_bfs(int s) const {
		std::vector<cost_type> dist(size(), INF);
		std::deque<int> deq;
		dist[s] = 0;
		deq.push_back(s);
		while(!deq.empty()) {
			int v = deq.front();
			deq.pop_front();
			for(auto &e : edges[v]) {
				if(dist[e.to] > dist[v] + e.cost) {
					dist[e.to] = dist[v] + e.cost;
					e.cost ? deq.push_back(e.to) : deq.push_front(e.to);
				}
			}
		}
		return dist;
	}

	// Ο((E+V) lg E)
	// unreachable: INF
	std::vector<cost_type> dijkstra(int s) const {
		std::vector<cost_type> dist(size(), INF);
		const auto compare = [](const std::pair<cost_type, int> &a, const std::pair<cost_type, int> &b) {
			return a.first > b.first;
		};
		std::priority_queue<std::pair<cost_type, int>, std::vector<std::pair<cost_type, int>>, decltype(compare)> que{compare};
		dist[s] = 0;
		que.emplace(0, s);
		while(!que.empty()) {
			std::pair<cost_type, int> p = que.top();
			que.pop();
			int v = p.second;
			if(dist[v] < p.first) continue;
			for(auto &e : edges[v]) {
				if(dist[e.to] > dist[v] + e.cost) {
					dist[e.to] = dist[v] + e.cost;
					que.emplace(dist[e.to], e.to);
				}
			}
		}
		return dist;
	}

	// Ο(VE)
	// unreachable: INF
	// reachable via negative cycle: -INF
	std::vector<cost_type> bellman_ford(int s) const {
		int n = size();
		std::vector<cost_type> res(n, INF);
		res[s] = 0;
		for(int loop = 0; loop < n - 1; loop++) {
			for(int v = 0; v < n; v++) {
				if(res[v] == INF) continue;
				for(auto &e : edges[v]) {
					res[e.to] = std::min(res[e.to], res[v] + e.cost);
				}
			}
		}
		std::queue<int> que;
		std::vector<int> chk(n);
		for(int v = 0; v < n; v++) {
			if(res[v] == INF) continue;
			for(auto &e : edges[v]) {
				if(res[e.to] > res[v] + e.cost and !chk[e.to]) {
					que.push(e.to);
					chk[e.to] = 1;
				}
			}
		}
		while(!que.empty()) {
			int now = que.front();
			que.pop();
			for(auto &e : edges[now]) {
				if(!chk[e.to]) {
					chk[e.to] = 1;
					que.push(e.to);
				}
			}
		}
		for(int i = 0; i < n; i++)
			if(chk[i]) res[i] = -INF;
		return res;
	}

	// Ο(V^3)
	std::vector<std::vector<cost_type>> warshall_floyd() const {
		const int n = size();
		std::vector<std::vector<cost_type>> dist(n, std::vector<cost_type>(n, INF));
		for(int i = 0; i < n; i++) dist[i][i] = 0;
		for(int i = 0; i < n; i++)
			for(auto &e : edges[i]) dist[i][e.to] = std::min(dist[i][e.to], e.cost);
		for(int k = 0; k < n; k++)
			for(int i = 0; i < n; i++) {
				if(dist[i][k] == INF) continue;
				for(int j = 0; j < n; j++) {
					if(dist[k][j] == INF) continue;
					dist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]);
				}
			}
		return dist;
	}

	// Ο(V) (using DFS)
	// if a cycle exists, return {}
	std::vector<int> topological_sort() const {
		std::vector<int> res;
		std::vector<int> used(size(), 0);
		bool not_DAG = false;
		auto dfs = [&](auto self, int k) -> void {
			if(not_DAG) return;
			if(used[k]) {
				if(used[k] == 1) not_DAG = true;
				return;
			}
			used[k] = 1;
			for(auto &e : edges[k]) self(self, e.to);
			used[k] = 2;
			res.push_back(k);
		};
		for(int i = 0; i < size(); i++) dfs(dfs, i);
		if(not_DAG) return std::vector<int>{};
		std::reverse(res.begin(), res.end());
		return res;
	}

	bool is_dag() const { return !topological_sort().empty(); }

	// Ο(V)
	// array of the distance to the most distant vertex
	// constraint: the graph is a tree
	std::vector<cost_type> height() const {
		auto vec1 = bfs(0);
		int v1 = -1, v2 = -1;
		cost_type dia = -1;
		for(int i = 0; i < int(size()); i++)
			if(dia < vec1[i]) dia = vec1[i], v1 = i;
		vec1 = bfs(v1);
		dia = -1;
		for(int i = 0; i < int(size()); i++)
			if(dia < vec1[i]) dia = vec1[i], v2 = i;
		auto vec2 = bfs(v2);
		for(int i = 0; i < int(size()); i++) {
			if(vec1[i] < vec2[i]) vec1[i] = vec2[i];
		}
		return vec1;
	}

	// O(V+E)
	// vector<(int)(0 or 1)>
	// if it is not bipartite, return {}
	std::vector<int> bipartite_grouping() const {
		std::vector<int> colors(size(), -1);
		auto dfs = [&](auto self, int now, int col) -> bool {
			colors[now] = col;
			for(auto &e : edges[now]) {
				if(col == colors[e.to]) return false;
				if(colors[e.to] == -1 and !self(self, e.to, !col)) return false;
			}
			return true;
		};
		for(int i = 0; i < int(size()); i++)
			if(colors[i] == -1 and !dfs(dfs, i, 0)) return std::vector<int>{};
		return colors;
	}

	bool is_bipartite() const { return !bipartite_grouping().empty(); }

	// Ο(V+E)
	// (v1, v2, diameter)
	std::tuple<int, int, cost_type> diameter() {
		std::vector<cost_type> dist = bfs(0);
		auto it = std::max_element(dist.begin(), dist.end());
		const int v = it - dist.begin();
		dist = bfs(v);
		it = std::max_element(dist.begin(), dist.end());
		return std::make_tuple(v, int(it - dist.begin()), *it);
	}

	// Ο(V+E)
	std::vector<int> subtree_size(const int root) {
		const int n = size();
		std::vector<int> ret(n, 1);
		auto dfs = [&](auto self, int now, int p = -1) -> void {
			for(const auto &e : (*this)[now]) {
				if(e.to == p) continue;
				self(self, e.to, now);
				ret[now] += ret[e.to];
			}
		};
		dfs(dfs, root);
		return ret;
	}

	// Ο(ElgE)
	cost_type prim() const {
		cost_type res = 0;
		std::priority_queue<edge, std::vector<edge>, std::greater<edge>> que;
		for(auto &e : edges[0]) que.push(e);
		std::vector<int> chk(size());
		chk[0] = 1;
		int cnt = 1;
		while(cnt < size()) {
			auto e = que.top();
			que.pop();
			if(chk[e.to]) continue;
			cnt++;
			res += e.cost;
			chk[e.to] = 1;
			for(auto &e2 : edges[e.to]) que.push(e2);
		}
		return res;
	}

	// Ο(ElgE)
	cost_type kruskal() const {
		std::vector<std::tuple<int, int, cost_type>> eds;
		for(const auto &adj : edges)
			for(const auto &ed : adj) eds.emplace_back(ed.from, ed.to, ed.cost);
		std::sort(eds.begin(), eds.end(), [](const std::tuple<int, int, cost_type> &a, const std::tuple<int, int, cost_type> &b) {
			return std::get<2>(a) < std::get<2>(b);
		});
		std::vector<int> uf_data(size(), -1);
		auto root = [&uf_data](auto self, int x) -> int {
			if(uf_data[x] < 0) return x;
			return uf_data[x] = self(self, uf_data[x]);
		};
		auto unite = [&uf_data, &root](int u, int v) -> bool {
			u = root(root, u), v = root(root, v);
			if(u == v) return false;
			if(uf_data[u] > uf_data[v]) std::swap(u, v);
			uf_data[u] += uf_data[v];
			uf_data[v] = u;
			return true;
		};
		cost_type ret = 0;
		for(auto &e : eds)
			if(unite(std::get<0>(e), std::get<1>(e))) ret += std::get<2>(e);
		return ret;
	}

	// O(V)
	std::vector<int> centroid() const {
		std::vector<int> centroid, sz(size());
		auto dfs = [&](auto self, int now, int per) -> void {
			sz[now] = 1;
			bool is_centroid = true;
			for(auto &e : edges[now]) {
				if(e.to != per) {
					self(self, e.to, now);
					sz[now] += sz[e.to];
					if(sz[e.to] > size() / 2) is_centroid = false;
				}
			}
			if(size() - sz[now] > size() / 2) is_centroid = false;
			if(is_centroid) centroid.push_back(now);
		};
		dfs(dfs, 0, -1);
		return centroid;
	}

	// O(V+E)
	// bridge: (s, t)  (s < t);
	std::pair<std::vector<std::pair<int, int>>, std::vector<int>> bridges_and_articulations() const {
		std::vector<int> order(size(), -1), low(size()), articulation;
		int order_next = 0;
		std::vector<std::pair<int, int>> bridge;
		auto dfs = [&](auto self, int now, int par = -1) -> void {
			low[now] = order[now] = order_next++;
			bool is_articulation = false;
			int cnt = 0;
			for(auto &ed : edges[now]) {
				int &nxt = ed.to;
				if(nxt == par) continue;
				if(order[nxt] == -1) {
					cnt++;
					self(self, nxt, now);
					if(order[now] < low[nxt]) bridge.push_back(std::minmax(now, nxt));
					if(order[now] <= low[nxt]) is_articulation = true;
					low[now] = std::min(low[now], low[nxt]);
				} else if(order[now] > order[nxt]) {
					low[now] = std::min(low[now], order[nxt]);
				}
			}
			if(par == -1 and cnt < 2) is_articulation = false;
			if(is_articulation) articulation.push_back(now);
			return;
		};
		for(int i = 0; i < (int)size(); i++)
			if(order[i] == -1) dfs(dfs, i);
		return std::make_pair(bridge, articulation);
	}

	// Ο(V+E)
	// directed graph from root to leaf
	graph root_to_leaf(int root = 0) const {
		graph res(size());
		std::vector<int> chk(size(), 0);
		chk[root] = 1;
		auto dfs = [&](auto self, int now) -> void {
			for(auto &e : edges[now]) {
				if(chk[e.to] == 1) continue;
				chk[e.to] = 1;
				res.add_edge(now, e.to, e.cost, 1, 0);
				self(self, e.to);
			}
		};
		dfs(dfs, root);
		return res;
	}

	// Ο(V+E)
	// directed graph from leaf to root
	graph leaf_to_root(int root = 0) const {
		graph res(size());
		std::vector<int> chk(size(), 0);
		chk[root] = 1;
		auto dfs = [&](auto self, int now) -> void {
			for(auto &e : edges[now]) {
				if(chk[e.to] == 1) continue;
				chk[e.to] = 1;
				res.add_edge(e.to, now, e.cost, 1, 0);
				self(self, e.to);
			}
		};
		dfs(dfs, root);
		return res;
	}

	// cost_type Chu_Liu_Edmonds(int root = 0) {}
};
#pragma endregion
#line 3 "/home/nok0/documents/programming/library/graph/hld.hpp"

template <class cost_type>
struct heavy_light_decomposition {
   public:
	std::vector<int> sz, in, out, head, rev, par;

   private:
	graph<cost_type> &g;

	void dfs_sz(int v, int p = -1) {
		par[v] = p;
		if(!g[v].empty() and g[v].front().to == p) std::swap(g[v].front(), g[v].back());
		for(auto &e : g[v]) {
			if(e.to == p) continue;
			dfs_sz(e.to, v);
			sz[v] += sz[e.to];
			if(sz[g[v].front().to] < sz[e.to]) std::swap(g[v].front(), e);
		}
	}

	void dfs_hld(int v, int &t, int p = -1) {
		in[v] = t++;
		rev[in[v]] = v;
		for(auto &e : g[v]) {
			if(e.to == p) continue;
			head[e.to] = (g[v].front().to == e.to ? head[v] : e.to);
			dfs_hld(e.to, t, v);
		}
		out[v] = t;
	}

	void build(int root = 0) {
		dfs_sz(root);
		int t = 0;
		head[root] = root;
		dfs_hld(root, t);
	}

   public:
	heavy_light_decomposition(graph<cost_type> &g_, int root = 0) : g(g_) {
		int n = g.size();
		sz.resize(n, 1);
		in.resize(n);
		out.resize(n);
		head.resize(n);
		rev.resize(n);
		par.resize(n);
		build(root);
	}

	int level_ancestor(int v, int level) {
		while(true) {
			int u = head[v];
			if(in[v] - level >= in[u]) return rev[in[v] - level];
			level -= in[v] - in[u] + 1;
			v = par[u];
		}
	}

	int lowest_common_ancestor(int u, int v) {
		for(;; v = par[head[v]]) {
			if(in[u] > in[v]) std::swap(u, v);
			if(head[u] == head[v]) return u;
		}
	}

	// u, v: vertex, unit: unit, q: query on a path, f: binary operation ((T, T) -> T)
	template <typename T, typename Q, typename F>
	T query(int u, int v, const T &unit, const Q &q, const F &f, bool edge = false) {
		T l = unit, r = unit;
		for(;; v = par[head[v]]) {
			if(in[u] > in[v]) std::swap(u, v), std::swap(l, r);
			if(head[u] == head[v]) break;
			l = f(q(in[head[v]], in[v] + 1), l);
		}
		return f(f(q(in[u] + edge, in[v] + 1), l), r);
	}

	// u, v: vertex, q: update query
	template <typename Q>
	void add(int u, int v, const Q &q, bool edge = false) {
		for(;; v = par[head[v]]) {
			if(in[u] > in[v]) std::swap(u, v);
			if(head[u] == head[v]) break;
			q(in[head[v]], in[v] + 1);
		}
		q(in[u] + edge, in[v] + 1);
	}

	std::pair<int, int> subtree(int v, bool edge = false) { return std::pair<int, int>(in[v] + edge, out[v]); }
};
#line 2 "/home/nok0/documents/programming/library/graph/tree_doubling.hpp"

template <class cost_type>
struct tree_doubling {
   private:
	std::vector<cost_type> dist;
	std::vector<int> depth;
	std::vector<std::vector<int>> parent;
	int max_jump = 1;

	void build() {
		for(int i = 0; i < max_jump - 1; i++) {
			for(int v = 0; v < (int)dist.size(); v++) {
				if(parent[i][v] == -1)
					parent[i + 1][v] = -1;
				else
					parent[i + 1][v] = parent[i][parent[i][v]];
			}
		}
	}

   public:
	tree_doubling() = default;
	tree_doubling(const graph<cost_type> &g, const int root = 0) : dist(g.size()), depth(g.size()) {
		int n = g.size();
		while((1 << max_jump) < n) max_jump++;
		parent.assign(max_jump, std::vector<int>(n, -1));
		auto dfs = [&](auto self, int now, int per, int d, cost_type cost) -> void {
			parent[0][now] = per;
			depth[now] = d;
			dist[now] = cost;
			for(auto &e : g[now])
				if(e.to != per) self(self, e.to, now, d + 1, cost + e.cost);
		};
		dfs(dfs, root, -1, 0, 0LL);
		build();
	}

	int lowest_common_ancestor(int u, int v) {
		if(depth[u] < depth[v]) std::swap(u, v);
		int k = int(parent.size());
		for(int i = 0; i < k; i++)
			if((depth[u] - depth[v]) >> i & 1) u = parent[i][u];
		if(u == v) return u;
		for(int i = k - 1; i >= 0; i--)
			if(parent[i][u] != parent[i][v]) u = parent[i][u], v = parent[i][v];
		return parent[0][u];
	}

	cost_type length_of_path(const int u, const int v) { return dist[u] + dist[v] - dist[lowest_common_ancestor(u, v)] * 2; }

	int level_ancestor(int v, int level) {
		assert(level >= 0);
		for(int jump = 0; jump < max_jump and level; jump++) {
			if(level & 1) v = parent[jump][v];
			level >>= 1;
		}
		return v;
	}
};
#line 3 "/home/nok0/documents/programming/library/template/def_const.hpp"

const int inf = 1000000000;
const long long INF = 1000000000000000000ll;
#line 4 "/home/nok0/documents/programming/library/template/debug.hpp"

namespace viewer {
void view(const long long &e) {
	if(e == INF)
		std::cerr << "INF";
	else if(e == -INF)
		std::cerr << "-INF";
	else
		std::cerr << e;
}

void view(const int &e) {
	if(e == inf)
		std::cerr << "inf";
	else if(e == -inf)
		std::cerr << "-inf";
	else
		std::cerr << e;
}

template <typename T>
void view(const T &e) {
	std::cerr << e;
}

template <typename T, typename U>
void view(const std::pair<T, U> &p) {
	std::cerr << "(";
	view(p.first);
	std::cerr << ", ";
	view(p.second);
	std::cerr << ")";
}

template <class T0, class T1, class T2>
void view(const std::tuple<T0, T1, T2> &p) {
	std::cerr << "(";
	view(std::get<0>(p));
	std::cerr << ", ";
	view(std::get<1>(p));
	std::cerr << ", ";
	view(std::get<2>(p));
	std::cerr << ")";
}

template <class T0, class T1, class T2, class T3>
void view(const std::tuple<T0, T1, T2, T3> &p) {
	std::cerr << "(";
	view(std::get<0>(p));
	std::cerr << ", ";
	view(std::get<1>(p));
	std::cerr << ", ";
	view(std::get<2>(p));
	std::cerr << ", ";
	view(std::get<3>(p));
	std::cerr << ")";
}

template <typename T>
void view(const std::set<T> &s) {
	if(s.empty()) {
		std::cerr << "{ }";
		return;
	}
	std::cerr << "{ ";
	for(auto &t : s) {
		view(t);
		std::cerr << ", ";
	}
	std::cerr << "\b\b }";
}

template <typename T>
void view(const std::unordered_set<T> &s) {
	if(s.empty()) {
		std::cerr << "{ }";
		return;
	}
	std::cerr << "{ ";
	for(auto &t : s) {
		view(t);
		std::cerr << ", ";
	}
	std::cerr << "\b\b }";
}

template <typename T>
void view(const std::multiset<T> &s) {
	if(s.empty()) {
		std::cerr << "{ }";
		return;
	}
	std::cerr << "{ ";
	for(auto &t : s) {
		view(t);
		std::cerr << ", ";
	}
	std::cerr << "\b\b }";
}

template <typename T>
void view(const std::unordered_multiset<T> &s) {
	if(s.empty()) {
		std::cerr << "{ }";
		return;
	}
	std::cerr << "{ ";
	for(auto &t : s) {
		view(t);
		std::cerr << ", ";
	}
	std::cerr << "\b\b }";
}

template <typename T>
void view(const std::vector<T> &v) {
	if(v.empty()) {
		std::cerr << "{ }";
		return;
	}
	std::cerr << "{ ";
	for(const auto &e : v) {
		view(e);
		std::cerr << ", ";
	}
	std::cerr << "\b\b }";
}

template <typename T, std::size_t ary_size>
void view(const std::array<T, ary_size> &v) {
	if(v.empty()) {
		std::cerr << "{ }";
		return;
	}
	std::cerr << "{ ";
	for(const auto &e : v) {
		view(e);
		std::cerr << ", ";
	}
	std::cerr << "\b\b }";
}

template <typename T>
void view(const std::vector<std::vector<T>> &vv) {
	std::cerr << "{\n";
	for(const auto &v : vv) {
		std::cerr << "\t";
		view(v);
		std::cerr << '\n';
	}
	std::cerr << "}";
}

template <typename T, typename U>
void view(const std::vector<std::pair<T, U>> &v) {
	std::cerr << "{\n";
	for(const auto &c : v) {
		std::cerr << "\t(";
		view(c.first);
		std::cerr << ", ";
		view(c.second);
		std::cerr << ")\n";
	}
	std::cerr << "}";
}

template <class T0, class T1, class T2>
void view(const std::vector<std::tuple<T0, T1, T2>> &v) {
	if(v.empty()) {
		std::cerr << "{ }";
		return;
	}
	std::cerr << '{';
	for(const auto &t : v) {
		std::cerr << "\n\t";
		view(t);
		std::cerr << ",";
	}
	std::cerr << "\n}";
}

template <class T0, class T1, class T2, class T3>
void view(const std::vector<std::tuple<T0, T1, T2, T3>> &v) {
	if(v.empty()) {
		std::cerr << "{ }";
		return;
	}
	std::cerr << '{';
	for(const auto &t : v) {
		std::cerr << "\n\t";
		view(t);
		std::cerr << ",";
	}
	std::cerr << "\n}";
}

template <typename T, typename U>
void view(const std::map<T, U> &m) {
	std::cerr << "{\n";
	for(const auto &t : m) {
		std::cerr << "\t[";
		view(t.first);
		std::cerr << "] : ";
		view(t.second);
		std::cerr << '\n';
	}
	std::cerr << "}";
}

template <typename T, typename U>
void view(const std::unordered_map<T, U> &m) {
	std::cerr << "{\n";
	for(const auto &t : m) {
		std::cerr << "\t[";
		view(t.first);
		std::cerr << "] : ";
		view(t.second);
		std::cerr << '\n';
	}
	std::cerr << "}";
}
}  // namespace viewer

// when compiling : g++ foo.cpp -DLOCAL
#ifdef LOCAL
void debug_out() {}
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
	viewer::view(H);
	std::cerr << ", ";
	debug_out(T...);
}
#define debug(...)                                                \
	do {                                                          \
		std::cerr << __LINE__ << " [" << #__VA_ARGS__ << "] : ["; \
		debug_out(__VA_ARGS__);                                   \
		std::cerr << "\b\b]\n";                                   \
	} while(0)
#define dump(x)                                      \
	do {                                             \
		std::cerr << __LINE__ << " " << #x << " : "; \
		viewer::view(x);                             \
		std::cerr << '\n';                           \
	} while(0)

#else
#define debug(...) (void(0))
#define dump(x)    (void(0))
#endif
#line 3 "/home/nok0/documents/programming/library/template/def_name.hpp"

#define pb        push_back
#define eb        emplace_back
#define fi        first
#define se        second
#define SZ(x)     ((int)(x).size())
#define all(x)    (x).begin(), (x).end()
#define rall(x)   (x).rbegin(), (x).rend()
#define popcnt(x) __builtin_popcountll(x)
template <class T = int>
using V = std::vector<T>;
template <class T = int>
using VV = std::vector<std::vector<T>>;
template <class T>
using pqup = std::priority_queue<T, std::vector<T>, std::greater<T>>;
using ll = long long;
using ld = long double;
using int128 = __int128_t;
using pii = std::pair<int, int>;
using pll = std::pair<long long, long long>;
#line 3 "/home/nok0/documents/programming/library/template/fast_io.hpp"

struct fast_io {
	fast_io() {
		std::ios::sync_with_stdio(false);
		std::cin.tie(nullptr);
		std::cout << std::fixed << std::setprecision(15);
	}
} fast_io_;
#line 3 "/home/nok0/documents/programming/library/template/input.hpp"

template <class T, class U>
std::istream &operator>>(std::istream &is, std::pair<T, U> &p) {
	is >> p.first >> p.second;
	return is;
}
template <class T>
std::istream &operator>>(std::istream &is, std::vector<T> &v) {
	for(T &i : v) is >> i;
	return is;
}
std::istream &operator>>(std::istream &is, __int128_t &a) {
	std::string s;
	is >> s;
	__int128_t ret = 0;
	for(int i = 0; i < (int)s.length(); i++)
		if('0' <= s[i] and s[i] <= '9')
			ret = 10 * ret + s[i] - '0';
	a = ret * (s[0] == '-' ? -1 : 1);
	return is;
}
namespace scanner {
void scan(int &a) { std::cin >> a; }
void scan(long long &a) { std::cin >> a; }
void scan(std::string &a) { std::cin >> a; }
void scan(char &a) { std::cin >> a; }
void scan(char a[]) { std::ignore = std::scanf("%s", a); }
void scan(double &a) { std::cin >> a; }
void scan(long double &a) { std::cin >> a; }
template <class T, class U>
void scan(std::pair<T, U> &p) { std::cin >> p; }
template <class T>
void scan(std::vector<T> &a) { std::cin >> a; }
void INPUT() {}
template <class Head, class... Tail>
void INPUT(Head &head, Tail &...tail) {
	scan(head);
	INPUT(tail...);
}
}  // namespace scanner
#define VEC(type, name, size)     \
	std::vector<type> name(size); \
	scanner::INPUT(name)
#define VVEC(type, name, h, w)                                    \
	std::vector<std::vector<type>> name(h, std::vector<type>(w)); \
	scanner::INPUT(name)
#define INT(...)     \
	int __VA_ARGS__; \
	scanner::INPUT(__VA_ARGS__)
#define LL(...)            \
	long long __VA_ARGS__; \
	scanner::INPUT(__VA_ARGS__)
#define STR(...)             \
	std::string __VA_ARGS__; \
	scanner::INPUT(__VA_ARGS__)
#define CHAR(...)     \
	char __VA_ARGS__; \
	scanner::INPUT(__VA_ARGS__)
#define DOUBLE(...)     \
	double __VA_ARGS__; \
	scanner::INPUT(__VA_ARGS__)
#define LD(...)              \
	long double __VA_ARGS__; \
	scanner::INPUT(__VA_ARGS__)
#line 3 "/home/nok0/documents/programming/library/template/math.hpp"

template <class T, class U>
inline bool chmin(T &a, const U &b) { return a > b ? a = b, true : false; }
template <class T, class U>
inline bool chmax(T &a, const U &b) { return a < b ? a = b, true : false; }
template <class T>
T divup(T x, T y) { return (x + y - 1) / y; }
template <class T>
T POW(T a, long long n) {
	T ret = 1;
	while(n) {
		if(n & 1) ret *= a;
		a *= a;
		n >>= 1;
	}
	return ret;
}
long long POW(long long a, long long n, const int mod) {
	long long ret = 1;
	a = (a % mod + mod) % mod;
	while(n) {
		if(n & 1) (ret *= a) %= mod;
		(a *= a) %= mod;
		n >>= 1;
	}
	return ret;
}
template <class T, class F>
T bin_search(T ok, T ng, const F &f) {
	while(abs(ok - ng) > 1) {
		T mid = (ok + ng) >> 1;
		(f(mid) ? ok : ng) = mid;
	}
	return ok;
}
template <class T, class F>
T bin_search(T ok, T ng, const F &f, int loop) {
	for(int i = 0; i < loop; i++) {
		T mid = (ok + ng) / 2;
		(f(mid) ? ok : ng) = mid;
	}
	return ok;
}
#line 3 "/home/nok0/documents/programming/library/template/output.hpp"


template <class T, class U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {
	os << p.first << " " << p.second;
	return os;
}
template <class T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &a) {
	for(int i = 0; i < int(a.size()); ++i) {
		if(i) os << " ";
		os << a[i];
	}
	return os;
}
std::ostream &operator<<(std::ostream &dest, __int128_t &value) {
	std::ostream::sentry s(dest);
	if(s) {
		__uint128_t tmp = value < 0 ? -value : value;
		char buffer[128];
		char *d = std::end(buffer);
		do {
			--d;
			*d = "0123456789"[tmp % 10];
			tmp /= 10;
		} while(tmp != 0);
		if(value < 0) {
			--d;
			*d = '-';
		}
		int len = std::end(buffer) - d;
		if(dest.rdbuf()->sputn(d, len) != len) {
			dest.setstate(std::ios_base::badbit);
		}
	}
	return dest;
}
template <class T>
void print(const T a) { std::cout << a << '\n'; }
template <class Head, class... Tail>
void print(Head H, Tail... T) {
	std::cout << H << ' ';
	print(T...);
}
template <class T>
void println(const T a) { std::cout << a << '\n'; }
template <class T>
void println(const std::vector<T> &a) {
	for(const auto &v : a)
		std::cout << v << '\n';
}
template <class Head, class... Tail>
void println(Head H, Tail... T) {
	std::cout << H << '\n';
	println(T...);
}
void Yes(const bool b = true) { std::cout << (b ? "Yes\n" : "No\n"); }
void No() { std::cout << "No\n"; }
void YES(const bool b = true) { std::cout << (b ? "YES\n" : "NO\n"); }
void NO() { std::cout << "NO\n"; }
#line 2 "/home/nok0/documents/programming/library/template/rep.hpp"

#define foa(v, a)                   for (auto &v : a)
#define repname(a, b, c, d, e, ...) e
#define rep(...)                    repname(__VA_ARGS__, rep3, rep2, rep1, rep0)(__VA_ARGS__)
#define rep0(x)                     for (int rep_counter = 0; rep_counter < (x); ++rep_counter)
#define rep1(i, x)                  for (int i = 0; i < (x); ++i)
#define rep2(i, l, r)               for (int i = (l); i < (r); ++i)
#define rep3(i, l, r, c)            for (int i = (l); i < (r); i += (c))

#define repsname(a, b, c, ...) c
#define reps(...)              repsname(__VA_ARGS__, reps1, reps0)(__VA_ARGS__)
#define reps0(x)               for (int reps_counter = 1; reps_counter <= (x); ++reps_counter)
#define reps1(i, x)            for (int i = 1; i <= (x); ++i)

#define rrepname(a, b, c, ...) c
#define rrep(...)              rrepname(__VA_ARGS__, rrep1, rrep0)(__VA_ARGS__)
#define rrep0(x)               for (int rrep_counter = (x)-1; rrep_counter >= 0; --rrep_counter)
#define rrep1(i, x)            for (int i = (x)-1; i >= 0; --i)
#line 3 "/home/nok0/documents/programming/library/template/string_converter.hpp"

struct string_converter {
	char start = 0;
	char type(const char &c) const { return (islower(c) ? 'a' : isupper(c) ? 'A' :
		                                                    isdigit(c)     ? '0' :
		                                                                     0); }
	int convert(const char &c) {
		if(!start) start = type(c);
		return c - start;
	}
	int convert(const char &c, const std::string &chars) { return chars.find(c); }
	template <typename T>
	auto convert(const T &v) {
		std::vector<decltype(convert(v[0]))> ret;
		ret.reserve(size(v));
		for(auto &&e : v) ret.emplace_back(convert(e));
		return ret;
	}
	template <typename T>
	auto convert(const T &v, const std::string &chars) {
		std::vector<decltype(convert(v[0], chars))> ret;
		ret.reserve(size(v));
		for(auto &&e : v) ret.emplace_back(convert(e, chars));
		return ret;
	}
	int operator()(const char &v, char s = 0) {
		start = s;
		return convert(v);
	}
	int operator()(const char &v, const std::string &chars) { return convert(v, chars); }
	template <typename T>
	auto operator()(const T &v, char s = 0) {
		start = s;
		return convert(v);
	}
	template <typename T>
	auto operator()(const T &v, const std::string &chars) { return convert(v, chars); }
} toint;
#line 3 "/home/nok0/documents/programming/library/template/vector.hpp"

template <class T>
int lb(const std::vector<T> &a, const T x) { return std::distance((a).begin(), std::lower_bound((a).begin(), (a).end(), (x))); }
template <class T>
int ub(const std::vector<T> &a, const T x) { return std::distance((a).begin(), std::upper_bound((a).begin(), (a).end(), (x))); }
template <class T>
void UNIQUE(std::vector<T> &a) {
	std::sort(a.begin(), a.end());
	a.erase(std::unique(a.begin(), a.end()), a.end());
}
template <class T>
std::vector<T> press(std::vector<T> &a) {
	auto res = a;
	UNIQUE(res);
	for(auto &v : a)
		v = lb(res, v);
	return res;
}
#define SORTname(a, b, c, ...) c
#define SORT(...)              SORTname(__VA_ARGS__, SORT1, SORT0, ...)(__VA_ARGS__)
#define SORT0(a)               std::sort((a).begin(), (a).end())
#define SORT1(a, c)            std::sort((a).begin(), (a).end(), [](const auto x, const auto y) { return x c y; })
template <class T>
void ADD(std::vector<T> &a, const T x = 1) {
	for(auto &v : a) v += x;
}
template <class T>
void SUB(std::vector<T> &a, const T x = 1) {
	for(auto &v : a) v -= x;
}
template <class T>
struct cum_vector {
   public:
	cum_vector() = default;
	template <class U>
	cum_vector(const std::vector<U> &vec) : cum((int)vec.size() + 1) {
		for(int i = 0; i < (int)vec.size(); i++)
			cum[i + 1] = cum[i] + vec[i];
	}
	T prod(int l, int r) {
		return cum[r] - cum[l];
	}

   private:
	std::vector<T> cum;
};
std::vector<std::pair<char, int>> rle(const std::string &s) {
	const int n = s.size();
	std::vector<std::pair<char, int>> ret;
	ret.reserve(n);
	for(int l = 0; l < n;) {
		int r = l + 1;
		for(; r < n and s[l] == s[r]; r++) {}
		ret.emplace_back(s[l], r - l);
		l = r;
	}
	return ret;
}
template <class T>
std::vector<std::pair<T, int>> rle(const std::vector<T> &v) {
	const int n = v.size();
	std::vector<std::pair<T, int>> ret;
	ret.reserve(n);
	for(int l = 0; l < n;) {
		int r = l + 1;
		for(; r < n and v[l] == v[r]; r++) {}
		ret.emplace_back(v[l], r - l);
		l = r;
	}
	return ret;
}
std::vector<int> iota(int n) {
	std::vector<int> p(n);
	std::iota(p.begin(), p.end(), 0);
	return p;
}
#line 12 "/home/nok0/documents/programming/library/template/all"
using namespace std;
#line 7 "a.cpp"

using S = ll;
S op(S x, S y) {
	return max(x, y);
}
S e() {
	return 0ll;
}

void main_();
int main() {
	int t = 1;
	while(t--) main_();
}
using T = tuple<int, int, int, int>;
void main_() {
	LL(n, k, c);
	V<T> es;
	rep(i, k) {
		INT(u, v, w, p);
		--u, --v;
		es.pb({u, v, w, p});
	}
	auto f = [&](T x, T y) {
		return get<2>(x) < get<2>(y);
	};
	sort(all(es), f);
	atcoder::dsu uf(n);
	graph g(n);
	ll wei = 0;
	ll ans = 0;
	V<T> oth;
	for(auto [u, v, w, p] : es) {
		if(!uf.same(u, v)) {
			uf.merge(u, v);
			g.add_edge(u, v, w);
			wei += w;
			chmax(ans, p);
		} else {
			oth.push_back({u, v, w, p});
		}
	}

	if(wei > c) {
		print(-1);
		return;
	}

	auto h = g.root_to_leaf(0);
	heavy_light_decomposition hld(g, 0);
	atcoder::segtree<S, op, e> seg(n);
	rep(i, n) {
		for(auto e : h[i]) {
			seg.set(hld.in[e.to], e.cost);
		}
	}


	for(auto [u, v, w, p] : oth) {
		if(ans >= p) continue;
		// uso その中で最大の辺を見つけます
		auto len = hld.query(
		    u, v, 0, [&](int l, int r) { return seg.prod(l, r); }, [](ll x, ll y) { return max(x, y); }, 1);
		debug(len);
		if(wei - len + w <= c) chmax(ans, p);
	}
	print(ans);
	// 利益を hoge 以上にできるか 判定
	// 最小全域木を取る
	//
}
0