結果

問題 No.2640 traO Stamps
ユーザー 👑 binapbinap
提出日時 2024-02-19 21:50:05
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,057 ms / 2,000 ms
コード長 3,563 bytes
コンパイル時間 5,029 ms
コンパイル使用メモリ 272,348 KB
最終ジャッジ日時 2025-02-19 16:52:52
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
#include<atcoder/all>
#define rep(i,n) for(int i=0;i<n;i++)
using namespace std;
using namespace atcoder;
typedef long long ll;
typedef vector<int> vi;
typedef vector<long long> vl;
typedef vector<vector<int>> vvi;
typedef vector<vector<long long>> vvl;
typedef long double ld;
typedef pair<int, int> P;
ostream& operator<<(ostream& os, const modint& a) {os << a.val(); return os;}
template <int m> ostream& operator<<(ostream& os, const static_modint<m>& a) {os << a.val(); return os;}
template<typename T> istream& operator>>(istream& is, vector<T>& v){int n = v.size(); assert(n > 0); rep(i, n) is >> v[i]; return is;}
template<typename U, typename T> ostream& operator<<(ostream& os, const pair<U, T>& p){os << p.first << ' ' << p.second; return os;}
template<typename T> ostream& operator<<(ostream& os, const vector<T>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : " "); return
    os;}
template<typename T> ostream& operator<<(ostream& os, const vector<vector<T>>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : "");
    return os;}
template<typename T> void chmin(T& a, T b){a = min(a, b);}
template<typename T> void chmax(T& a, T b){a = max(a, b);}
template<typename T>
struct Edge_Dijkstra{
int from, to;
T cost;
Edge_Dijkstra(int from, int to, T cost) : from(from), to(to), cost(cost) {};
};
const long long INF = 1001001001001001;
template<typename T>
struct Dijkstra{
int n, m;
vector<bool> initialized;
vector<Edge_Dijkstra<T>> E;
vector<vector<int>> G;
map<int, vector<T>> dist;
map<int, vector<int>> idx;
Dijkstra(int _n) : n(_n), m(0), initialized(n, false), G(n){}
void add_edge(int from, int to, T cost){
Edge_Dijkstra e(from, to, cost);
E.push_back(e);
G[from].emplace_back(m);
m++;
}
void calc(int s){
initialized[s] = true;
dist[s] = vector<T>(n, INF);
idx[s] = vector<int>(n, -1);
priority_queue<tuple<T, int, int>, vector<tuple<T, int, int>>, greater<tuple<T, int, int>>> pq;
pq.emplace(0, s, -1);
while(pq.size()){
auto [cost, from, index] = pq.top(); pq.pop();
if(dist[s][from] <= cost) continue;
dist[s][from] = cost;
idx[s][from] = index;
for(int index : G[from]){
int to = E[index].to;
T cost_plus = E[index].cost;
if(dist[s][to] <= cost + cost_plus) continue;
pq.emplace(cost + cost_plus, to, index);
}
}
}
int farthest(int s){
if(!initialized[s]) calc(s);
int idx = 0;
rep(i, n) if(dist[s][i] > dist[s][idx]) idx = i;
return idx;
}
T get_dist(int s, int t){
if(!initialized[s]) calc(s);
return dist[s][t];
}
vi restore(int s, int t){
if(!initialized[s]) calc(s);
if(dist[s][t] == INF) return vi(0);
vi res;
while(idx[s][t] != -1){
auto e = E[idx[s][t]];
res.push_back(idx[s][t]);
t = e.from;
}
reverse(res.begin(), res.end());
return res;
}
};
using S = long long;
S op(S a, S b){return a + b;}
S e(){return 0LL;}
int main(){
int n, m, k;
cin >> n >> m >> k;
vector<int> s(k + 1);
cin >> s;
rep(i, k + 1) s[i]--;
Dijkstra<long long> graph(n);
rep(i, m){
int a, b, c;
cin >> a >> b >> c;
a--; b--;
graph.add_edge(a, b, c);
graph.add_edge(b, a, c);
}
segtree<S, op, e> seg(k);
rep(i, k) seg.set(i, graph.get_dist(s[i], s[i + 1]));
int q;
cin >> q;
rep(_, q){
int t, x, y;
cin >> t >> x >> y;
if(t == 1){
y--;
s[x] = y;
if(x > 0) seg.set(x - 1, graph.get_dist(s[x - 1], s[x]));
if(x < k) seg.set(x, graph.get_dist(s[x], s[x + 1]));
}
if(t == 2){
auto res = seg.prod(x, y);
cout << res << "\n";
}
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0