結果

問題 No.2640 traO Stamps
ユーザー MMRZ
提出日時 2024-02-19 22:14:34
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 194 ms / 2,000 ms
コード長 5,368 bytes
コンパイル時間 2,835 ms
コンパイル使用メモリ 261,180 KB
実行使用メモリ 8,496 KB
最終ジャッジ日時 2024-09-29 02:09:45
合計ジャッジ時間 9,815 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

# include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
const double pi = acos(-1);
template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); }
template<class T>constexpr T hinf() { return inf<T>() / 2; }
template <typename T_char>T_char TL(T_char cX) { return tolower(cX); }
template <typename T_char>T_char TU(T_char cX) { return toupper(cX); }
template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; }
template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; }
template<class T> bool is_sqare(T a) { if(floor(sqrt(a)) * floor(sqrt(a)) == a){ return true; }return false; }
int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; }
int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; }
int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; }
ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); };
ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; };
template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>;
# define all(qpqpq) (qpqpq).begin(),(qpqpq).end()
# define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end())
# define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>)
# define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>)
# define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++)
# define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++)
# define len(x) ((ll)(x).size())
# define bit(n) (1LL << (n))
# define pb push_back
# define exists(c, e) ((c).find(e) != (c).end())
#ifdef LOCAL
# include "_debug_print.hpp"
# define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
# define debug(...) (static_cast<void>(0))
#endif
struct INIT{
INIT(){
std::ios::sync_with_stdio(false);
std::cin.tie(0);
cout << fixed << setprecision(20);
}
}INIT;
template<typename T = int> struct warshall_floyd {
int V;
vector<vector<T>> d;
T inf;
warshall_floyd(int _V) : V(_V){
inf = ::std::numeric_limits<T>::max() / 2;
d = vector<vector<T>>(V, vector<T>(V));
for(int i = 0;i < V;i++){
for(int j = 0;j < V;j++){
if(i == j)d[i][j] = 0;
else d[i][j] = inf;
}
}
}
void set(int a, int b, T cost){
d[a][b] = cost;
}
void calc(){
for(int k = 0;k < V;k++){
for(int i = 0;i < V;i++){
if(d[i][k] == inf)continue;
for(int j = 0;j < V;j++){
if(d[k][j] == inf)continue;
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
}
}
}
};
template<typename T>struct segment_tree {
using F = function<T(T, T)>;
int n;
vector<T> node;
F combine; //
T identify; //
//
segment_tree(vector<T> v, F _combine, T _identity) : combine(_combine), identify(_identity) {
int sz = (int)v.size();
n = 1;
while(n < sz)n *= 2;
node.resize(2 * n - 1, identify);
for(int i = 0;i < sz;i++)node[i + n - 1] = v[i];
for(int i = n - 2;i >= 0;i--)node[i] = combine(node[2 * i + 1], node[2 * i + 2]);
}
//
segment_tree(int _n, F _combine, T _identify) : combine(_combine), identify(_identify){
int sz = _n;
n = 1;
while(n < sz)n *= 2;
node.resize(2 * n - 1, identify);
}
T operator[](int x) {return node[x + n - 1]; }
void set(int x, T val){
x += (n - 1);
node[x] = val;
while(x > 0){
x = (x - 1) / 2;
node[x] = combine(node[2 * x + 1], node[2 * x + 2]);
}
}
T fold(int a, int b, int k = 0, int l = 0, int r = -1){
// [0, n)
if(r < 0) r = n;
// ->
if(r <= a || b <= l)return identify;
// -> 使
if(a <= l && r <= b)return node[k];
// ->
T vl = fold(a, b, 2 * k + 1, l, (l + r) / 2);
T vr = fold(a, b, 2 * k + 2, (l + r) / 2, r);
return combine(vl, vr);
}
};
void solve(){
int n, m, k;
cin >> n >> m >> k;
vector<int> s(k+1);
rep(i, k+1)cin >> s[i], s[i]--;
warshall_floyd<ll> wf(n);
rep(i, m){
int a, b, c;
cin >> a >> b >> c;
a--, b--;
wf.set(a, b, c);
wf.set(b, a, c);
}
wf.calc();
segment_tree<ll> seg(k, [](ll a, ll b){return a + b; }, 0);
rep(i, k)seg.set(i, wf.d[s[i]][s[i+1]]);
int q;
cin >> q;
while(q--){
int t, x, y;
cin >> t >> x >> y;
if(t == 1){
y--;
if(x)seg.set(x-1, wf.d[s[x-1]][y]);
if(x<k)seg.set(x, wf.d[y][s[x+1]]);
s[x] = y;
}else{
cout << seg.fold(x, y) << endl;
}
}
}
int main(){
int t = 1;
//cin >> t;
while(t--)solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0