結果
問題 | No.2642 Don't cut line! |
ユーザー | Aeren |
提出日時 | 2024-02-19 22:28:14 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 190 ms / 4,000 ms |
コード長 | 11,873 bytes |
コンパイル時間 | 4,335 ms |
コンパイル使用メモリ | 293,536 KB |
実行使用メモリ | 39,740 KB |
最終ジャッジ日時 | 2024-09-29 03:35:25 |
合計ジャッジ時間 | 8,472 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 167 ms
39,228 KB |
testcase_02 | AC | 161 ms
39,740 KB |
testcase_03 | AC | 178 ms
36,024 KB |
testcase_04 | AC | 157 ms
35,776 KB |
testcase_05 | AC | 170 ms
37,432 KB |
testcase_06 | AC | 53 ms
6,820 KB |
testcase_07 | AC | 54 ms
6,816 KB |
testcase_08 | AC | 54 ms
6,820 KB |
testcase_09 | AC | 54 ms
6,816 KB |
testcase_10 | AC | 56 ms
6,816 KB |
testcase_11 | AC | 54 ms
6,816 KB |
testcase_12 | AC | 58 ms
6,816 KB |
testcase_13 | AC | 54 ms
6,816 KB |
testcase_14 | AC | 54 ms
6,816 KB |
testcase_15 | AC | 56 ms
6,816 KB |
testcase_16 | AC | 95 ms
12,472 KB |
testcase_17 | AC | 147 ms
32,516 KB |
testcase_18 | AC | 142 ms
32,464 KB |
testcase_19 | AC | 100 ms
25,896 KB |
testcase_20 | AC | 58 ms
12,956 KB |
testcase_21 | AC | 45 ms
6,816 KB |
testcase_22 | AC | 64 ms
10,784 KB |
testcase_23 | AC | 190 ms
36,596 KB |
testcase_24 | AC | 71 ms
15,260 KB |
testcase_25 | AC | 71 ms
13,976 KB |
testcase_26 | AC | 61 ms
8,344 KB |
testcase_27 | AC | 107 ms
25,520 KB |
testcase_28 | AC | 160 ms
33,780 KB |
testcase_29 | AC | 63 ms
10,124 KB |
testcase_30 | AC | 66 ms
12,588 KB |
testcase_31 | AC | 126 ms
28,212 KB |
testcase_32 | AC | 66 ms
11,864 KB |
testcase_33 | AC | 2 ms
6,820 KB |
testcase_34 | AC | 2 ms
6,816 KB |
testcase_35 | AC | 1 ms
6,820 KB |
ソースコード
// #pragma GCC optimize("O3,unroll-loops") #include <bits/stdc++.h> // #include <x86intrin.h> using namespace std; #if __cplusplus >= 202002L using namespace numbers; #endif template<bool Enable_small_to_large = true> struct disjoint_set{ int n, _group_count; vector<int> p; vector<list<int>> group; disjoint_set(){ } disjoint_set(int n): n(n), _group_count(n), p(n, -1), group(n){ assert(n >= 0); for(auto i = 0; i < n; ++ i) group[i] = {i}; } int make_set(){ p.push_back(-1); group.push_back(list<int>{p}); ++ _group_count; return n ++; } int root(int u){ return p[u] < 0 ? u : p[u] = root(p[u]); } bool share(int a, int b){ return root(a) == root(b); } int size(int u){ return -p[root(u)]; } bool merge(int u, int v){ u = root(u), v = root(v); if(u == v) return false; -- _group_count; if constexpr(Enable_small_to_large) if(p[u] > p[v]) swap(u, v); p[u] += p[v], p[v] = u; group[u].splice(group[u].end(), group[v]); return true; } bool merge(int u, int v, auto act){ u = root(u), v = root(v); if(u == v) return false; -- _group_count; bool swapped = false; if constexpr(Enable_small_to_large) if(p[u] > p[v]) swap(u, v), swapped = true; p[u] += p[v], p[v] = u; group[u].splice(group[u].end(), group[v]); act(u, v, swapped); return true; } int group_count() const{ return _group_count; } const list<int> &group_of(int u){ return group[root(u)]; } vector<vector<int>> group_up(){ vector<vector<int>> g(n); for(auto i = 0; i < n; ++ i) g[root(i)].push_back(i); g.erase(remove_if(g.begin(), g.end(), [&](auto &s){ return s.empty(); }), g.end()); return g; } void clear(){ _group_count = n; fill(p.begin(), p.end(), -1); for(auto i = 0; i < n; ++ i) group[i] = {i}; } friend ostream &operator<<(ostream &out, disjoint_set dsu){ auto gs = dsu.group_up(); out << "{"; if(!gs.empty()) for(auto i = 0; i < (int)gs.size(); ++ i){ out << "{"; for(auto j = 0; j < (int)gs[i].size(); ++ j){ out << gs[i][j]; if(j + 1 < (int)gs[i].size()) out << ", "; } out << "}"; if(i + 1 < (int)gs.size()) out << ", "; } return out << "}"; } }; // Requires disjoint_set template<class G> vector<int> minimum_spanning_forest(const G &g){ vector<int> order(g.edge.size()); iota(order.begin(), order.end(), 0); if(g.ignore) order.erase(remove_if(order.begin(), order.end(), [&](int id){ return g.ignore(id); }), order.end()); sort(order.begin(), order.end(), [&](int i, int j){ return g.edge[i].cost < g.edge[j].cost; }); disjoint_set dsu(g.n); vector<int> res; for(auto id: order){ auto &e = g.edge[id]; if(dsu.merge(e.from, e.to)) res.push_back(id); } return res; } template<class T> vector<int> minimum_spanning_forest(int n, const vector<tuple<int, int, T>> &edge){ vector<int> order(edge.size()); iota(order.begin(), order.end(), 0); sort(order.begin(), order.end(), [&](int i, int j){ return get<2>(edge[i]) < get<2>(edge[j]); }); disjoint_set dsu(n); vector<int> res; for(auto id: order){ auto &e = edge[id]; if(dsu.merge(get<0>(e), get<1>(e))) res.push_back(id); } return res; } template<class T> struct graph{ using Weight_t = T; struct Edge_t{ int from, to; T cost; }; int n; vector<Edge_t> edge; vector<vector<int>> adj; function<bool(int)> ignore; graph(int n = 1): n(n), adj(n){ assert(n >= 1); } graph(const vector<vector<int>> &adj, bool undirected = true): n((int)adj.size()), adj(n){ assert(n >= 1); if(undirected){ for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) if(u < v) link(u, v); } else for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) orient(u, v); } graph(const vector<vector<pair<int, T>>> &adj, bool undirected = true): n((int)adj.size()), adj(n){ assert(n >= 1); if(undirected){ for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) if(u < v) link(u, v, w); } else for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) orient(u, v, w); } graph(int n, vector<array<int, 2>> &edge, bool undirected = true): n(n), adj(n){ assert(n >= 1); for(auto [u, v]: edge) undirected ? link(u, v) : orient(u, v); } graph(int n, vector<tuple<int, int, T>> &edge, bool undirected = true): n(n), adj(n){ assert(n >= 1); for(auto [u, v, w]: edge) undirected ? link(u, v, w) : orient(u, v, w); } int operator()(int u, int id) const{ #ifdef LOCAL assert(0 <= id && id < (int)edge.size()); assert(edge[id].from == u || edge[id].to == u); #endif return u ^ edge[id].from ^ edge[id].to; } int link(int u, int v, T w = {}){ // insert an undirected edge int id = (int)edge.size(); adj[u].push_back(id), adj[v].push_back(id), edge.push_back({u, v, w}); return id; } int orient(int u, int v, T w = {}){ // insert a directed edge int id = (int)edge.size(); adj[u].push_back(id), edge.push_back({u, v, w}); return id; } void clear(){ for(auto [u, v, w]: edge){ adj[u].clear(); adj[v].clear(); } edge.clear(); ignore = {}; } graph transposed() const{ // the transpose of the directed graph graph res(n); for(auto &e: edge) res.orient(e.to, e.from, e.cost); res.ignore = ignore; return res; } int degree(int u) const{ // the degree (outdegree if directed) of u (without the ignoration rule) return (int)adj[u].size(); } // The adjacency list is sorted for each vertex. vector<vector<int>> get_adjacency_list() const{ vector<vector<int>> res(n); for(auto u = 0; u < n; ++ u) for(auto id: adj[u]){ if(ignore && ignore(id)) continue; res[(*this)(u, id)].push_back(u); } return res; } void set_ignoration_rule(const function<bool(int)> &f){ ignore = f; } void reset_ignoration_rule(){ ignore = nullptr; } friend ostream &operator<<(ostream &out, const graph &g){ for(auto id = 0; id < (int)g.edge.size(); ++ id){ if(g.ignore && g.ignore(id)) continue; auto &e = g.edge[id]; out << "{" << e.from << ", " << e.to << ", " << e.cost << "}\n"; } return out; } }; // Requires graph struct heavy_light_decomposition{ int n; vector<vector<int>> adj; // stores edge ids vector<int> pv; vector<int> pe; vector<int> size; vector<int> root_of; vector<int> root; vector<int> depth; vector<int> next; // highest point of the heavy path vector<int> prev; // lowest point of the heavy path vector<int> pos; vector<int> end; vector<int> order; vector<int> was; void init(int n){ assert(n >= 1); this->n = n; adj.assign(n, {}); pv.assign(n, -1); pe.assign(n, -1); order.clear(); pos.assign(n, -1); end.assign(n, -1); size.assign(n, 1); root_of.assign(n, -1); root.clear(); depth.assign(n, -1); next.assign(n, -1); prev.assign(n, -1); was.assign(n, -2); attempt = -1; } int attempt; template<class T> void build(const graph<T> &g, const vector<int> &src){ assert(g.n <= n); ++ attempt; root.clear(), order.clear(); for(auto id = 0; id < (int)g.edge.size(); ++ id){ if(g.ignore && g.ignore(id)) continue; auto &e = g.edge[id]; adj[e.from].push_back(id), adj[e.to].push_back(id); } auto dfs_init = [&](auto self, int u)->void{ assert(was[u] != attempt); // CYCLE FOUND was[u] = attempt; prev[u] = u; size[u] = 1; if(root_of[u] != u){ adj[u].erase(find(adj[u].begin(), adj[u].end(), pe[u])); } for(auto &id: adj[u]){ int v = g(u, id); pv[v] = u; pe[v] = id; depth[v] = depth[u] + 1; root_of[v] = root_of[u]; next[v] = u; self(self, v); size[u] += size[v]; if(size[v] > size[g(u, adj[u][0])]) swap(id, adj[u][0]); } if(!adj[u].empty()) prev[u] = prev[g(u, adj[u][0])]; }; auto dfs_hld = [&](auto self, int u)->void{ pos[u] = (int)order.size(); order.push_back(u); if(!adj[u].empty()){ int hv = g(u, adj[u][0]); for(auto id: adj[u]){ int v = g(u, id); next[v] = (v == hv ? next[u] : v); self(self, v); } } end[u] = (int)order.size(); }; for(auto r: src){ if(was[r] == attempt) continue; pv[r] = pe[r] = -1; depth[r] = 0; root_of[r] = r; root.push_back(r); next[r] = r; dfs_init(dfs_init, r); dfs_hld(dfs_hld, r); } } // Check if u is visited during the last build call bool visited(int u) const{ assert(0 <= u && u < n); return was[u] == attempt; } // O(1) bool ancestor_of(int u, int v) const{ return pos[u] <= pos[v] && end[v] <= end[u]; } int lca(int u, int v) const{ for(; next[u] != next[v]; v = pv[next[v]]) if(depth[next[u]] > depth[next[v]]) swap(u, v); return depth[u] < depth[v] ? u : v; } int steps(int u, int v, int w = -1) const{ return depth[u] + depth[v] - 2 * depth[~w ? w : lca(u, v)]; } // f reads the position in the data structure // One application of f void access_node(int u, auto f) const{ f(pos[u]); } // One application of f template<int VALS_IN_EDGES = 0> void access_subtree(int u, auto f) const{ f(pos[u] + VALS_IN_EDGES, end[u]); } // f(left, right, (left->right ?)) // O(log(n)) applications of f template<int VALS_IN_EDGES = 0> void access_path(int u, int v, auto f) const{ bool dir = true; for(; next[u] != next[v]; v = pv[next[v]]){ if(depth[next[u]] > depth[next[v]]) swap(u, v), dir = !dir; f(pos[next[v]], pos[v] + 1, dir); } if(depth[u] > depth[v]) swap(u, v), dir = !dir; f(pos[u] + VALS_IN_EDGES, pos[v] + 1, dir); } // Pair of indices {l, r} in the data structure. resr is reversed(v->next[v], pv[next[v]]-> ...) // O(log(n)) auto get_path(int u, int v) const{ vector<pair<int, int>> resl, resr; access_path(u, v, [&](int l, int r, bool dir){ (dir ? resl : resr).push_back({l, r}); }); return pair{resl, resr}; } }; // Specialization of sparse_table // Range min query by default. Set cmp = greater for max query template<class T, class Compare = less<>> struct range_minmax_query_solver{ int n; vector<vector<T>> data; Compare cmp; T T_id; range_minmax_query_solver(){ } // O(n * log(n)) range_minmax_query_solver(const vector<T> &a, Compare cmp = less<>(), T T_id = numeric_limits<T>::max()): n((int)a.size()), cmp(cmp), T_id(T_id), data({a}){ for(auto p = 1, i = 1; p << 1 <= n; p <<= 1, ++ i){ data.emplace_back(n - (p << 1) + 1); for(auto j = 0; j < (int)data[i].size(); ++ j) data[i][j] = cmp(data[i - 1][j], data[i - 1][j + p]) ? data[i - 1][j] : data[i - 1][j + p]; } } // O(1) T query(int l, int r) const{ assert(0 <= l && l <= r && r <= n); if(l == r) return T_id; int d = __lg(r - l); return cmp(data[d][l], data[d][r - (1 << d)]) ? data[d][l] : data[d][r - (1 << d)]; } }; int main(){ cin.tie(0)->sync_with_stdio(0); cin.exceptions(ios::badbit | ios::failbit); int n, m; long long th; cin >> n >> m >> th; vector<tuple<int, int, int>> edge(m); vector<int> profit(m); for(auto i = 0; i < m; ++ i){ auto &[u, v, w] = edge[i]; cin >> u >> v >> w >> profit[i], -- u, -- v; } auto mst = minimum_spanning_forest(n, edge); long long mst_cost = 0; vector<int> on_mst(m); int res = 0; graph<int> g(n); for(auto id: mst){ mst_cost += get<2>(edge[id]); on_mst[id] = true; res = max(res, profit[id]); auto [u, v, w] = edge[id]; g.link(u, v, w); } if(mst_cost > th){ cout << "-1\n"; return 0; } heavy_light_decomposition hld; hld.init(n); hld.build(g, {0}); vector<int> init(n); for(auto i = 1; i < n; ++ i){ init[i] = g.edge[hld.pe[hld.order[i]]].cost; } range_minmax_query_solver rmaxq(init, greater<>(), numeric_limits<int>::min()); vector<int> order(m); iota(order.begin(), order.end(), 0); ranges::sort(order, [&](int i, int j){ return profit[i] > profit[j]; }); for(auto i: order){ if(on_mst[i] || profit[i] < res){ continue; } auto [u, v, w] = edge[i]; int maxv = 0; hld.access_path<true>(u, v, [&](int l, int r, bool){ maxv = max(maxv, rmaxq.query(l, r)); }); if(mst_cost + get<2>(edge[i]) - maxv <= th){ cout << profit[i] << "\n"; return 0; } } cout << res << "\n"; return 0; } /* */