結果

問題 No.2643 Many Range Sums Problems
ユーザー ecottea
提出日時 2024-02-19 23:11:06
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 688 ms / 8,000 ms
コード長 11,264 bytes
コンパイル時間 4,441 ms
コンパイル使用メモリ 258,528 KB
最終ジャッジ日時 2025-02-19 17:38:41
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 34
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; using ull = unsigned long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define YES(b) {cout << ((b) ? "YES\n" : "NO\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d
#define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
// Union-Find
/*
* Potential_union_find<T>(int n) : O(n)
* n Union-Find
*
* bool set_diff(int a, int b, T d) : O(α(n))
* v[b] - v[a] = d false
*
* bool same(int a, int b) : O(α(n))
* a b
*
* T get_diff(int a, int b) : O(α(n))
* v[b] - v[a] -INFL
*
* int leader(int a) : O(α(n))
* a
*
* int size(int a) : O(α(n))
* a
*
* int size() : O(1)
*
*
* vv<piT> groups() : O(n α(n))
* (, )
*/
template <class T>
class Potential_union_find {
int n; //
int m; //
// parent_or_size[i] : i
// i
// -1
vi parent_or_size;
// pot[i] : i
// i
vector<T> pot;
public:
// n Union-Find
Potential_union_find(int n_) : n(n_), m(n), parent_or_size(n, -1), pot(n) {}
Potential_union_find() : n(0), m(0) {}
// a, b v[b] - v[a]
bool set_diff(int a, int b, T d) {
// verify : https://atcoder.jp/contests/abc320/tasks/abc320_d
// a, b ra, rb
int ra = leader(a);
int rb = leader(b);
//
//
if (ra == rb) return pot[b] - pot[a] == d;
// ra rb
if (-parent_or_size[ra] < -parent_or_size[rb]) {
swap(a, b);
swap(ra, rb);
d *= -1;
}
// ra
parent_or_size[ra] += parent_or_size[rb];
parent_or_size[rb] = ra;
pot[rb] = pot[a] - pot[b] + d;
// 1
m--;
return true;
}
// a, b
bool same(int a, int b) {
// verify : https://atcoder.jp/contests/abc320/tasks/abc320_d
//
return leader(a) == leader(b);
}
// v[b] - v[a]
T get_diff(int a, int b) {
// verify : https://atcoder.jp/contests/abc320/tasks/abc320_d
if (!same(a, b)) return T(INFL);
//
return pot[b] - pot[a];
}
// a
int leader(int a) {
// a
int pa = parent_or_size[a];
if (pa < 0) return a;
// a a pa ra
// pa ra
int ra = leader(pa);
// a ra a ra
parent_or_size[a] = ra;
pot[a] += pot[pa];
return ra;
}
// a
int size(int a) {
// a 調
return -parent_or_size[leader(a)];
}
//
int size() {
// verify : https://yukicoder.me/problems/no/2251
return m;
}
// (, )
vector<vector<pair<int, T>>> groups() {
// verify : https://atcoder.jp/contests/code-festival-2016-quala/tasks/codefestival_2016_qualA_d
vector<vector<pair<int, T>>> res(m);
vi r_to_i(n, -1); int i = 0;
rep(a, n) {
int r = leader(a);
if (r_to_i[r] == -1) r_to_i[r] = i++;
res[r_to_i[r]].emplace_back(a, pot[a]);
}
return res;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, Potential_union_find d) {
repe(g, d.groups()) {
repe(v, g) os << v << " ";
os << endl;
}
return os;
}
#endif
};
//O(n + m)
/*
* g vs i vs 1 nn[i]
* i nn[i] dist[i] -1, INF
*
*
*/
void nearest_neighbor(const Graph& g, const vi& vs, vi& nn, vi& dist) {
// verify : https://atcoder.jp/contests/agc024/tasks/agc024_d
int n = sz(g);
nn = vi(n, -1);
dist = vi(n, INF);
queue<int> q;
repe(s, vs) {
q.push(s);
nn[s] = s;
dist[s] = 0;
}
while (!q.empty()) {
int s = q.front(); q.pop();
repe(t, g[s]) {
if (dist[t] != INF) continue;
dist[t] = dist[s] + 1;
nn[t] = nn[s];
q.push(t);
}
}
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int n; ll k;
cin >> n >> k;
vi r(n); vl x(n);
rep(i, n) cin >> r[i] >> x[i];
Graph g(n + 1);
Potential_union_find<ll> d(n + 1);
rep(i, n) {
g[i].push_back(r[i]);
g[r[i]].push_back(i);
d.set_diff(i, r[i], x[i]);
}
vl p(n + 1);
repi(i, 1, n) p[i] = d.get_diff(0, i);
dump(p);
rep(i0, n) {
vi nn, dist;
nearest_neighbor(g, vi{ i0, r[i0] }, nn, dist);
dump(nn);
bool ok = true; ll x_min = -INFL, x_max = INFL;
rep(i, n) {
if (nn[i] == nn[i + 1]) {
if (p[i + 1] - p[i] < 0 || p[i + 1] - p[i] > k) {
ok = false;
break;
}
}
else if (nn[i] == i0 && nn[i + 1] != i0) {
chmax(x_min, p[i] - p[i + 1]);
chmin(x_max, p[i] - p[i + 1] + k);
}
else if (nn[i] != i0 && nn[i + 1] == i0) {
chmin(x_max, p[i + 1] - p[i]);
chmax(x_min, p[i + 1] - p[i] - k);
}
}
dump(x_min, x_max);
if (x_min > x_max) ok = false;
Yes(ok);
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0