結果
問題 | No.310 2文字しりとり |
ユーザー | 👑 potato167 |
提出日時 | 2024-02-20 22:16:17 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 940 ms / 6,000 ms |
コード長 | 11,473 bytes |
コンパイル時間 | 2,089 ms |
コンパイル使用メモリ | 130,296 KB |
実行使用メモリ | 316,800 KB |
最終ジャッジ日時 | 2024-09-29 03:53:24 |
合計ジャッジ時間 | 8,014 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,820 KB |
testcase_08 | AC | 2 ms
6,816 KB |
testcase_09 | AC | 2 ms
6,820 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,816 KB |
testcase_12 | AC | 2 ms
6,820 KB |
testcase_13 | AC | 2 ms
6,816 KB |
testcase_14 | AC | 2 ms
6,816 KB |
testcase_15 | AC | 2 ms
6,816 KB |
testcase_16 | AC | 2 ms
6,820 KB |
testcase_17 | AC | 2 ms
6,820 KB |
testcase_18 | AC | 3 ms
6,816 KB |
testcase_19 | AC | 5 ms
6,816 KB |
testcase_20 | AC | 7 ms
6,816 KB |
testcase_21 | AC | 846 ms
316,672 KB |
testcase_22 | AC | 936 ms
316,672 KB |
testcase_23 | AC | 936 ms
316,800 KB |
testcase_24 | AC | 921 ms
316,672 KB |
testcase_25 | AC | 940 ms
316,800 KB |
testcase_26 | AC | 172 ms
53,632 KB |
testcase_27 | AC | 257 ms
81,920 KB |
ソースコード
#include<iostream> #include<vector> #include<random> namespace po167{ std::random_device po_seed_gen; std::mt19937 po_random_gen(po_seed_gen()); long long randLong(long long l = 0, long long r = (1ll << 62)){ return std::uniform_int_distribution<long long>(l, r - 1)(po_random_gen); } template<class T> std::vector<T> rand_vec(int sz, long long l =0, long long r = (1ll << 62)){ std::vector<T> res(sz); for(auto &x: res) x = T(randLong(l, r)); return res; } //https://ikatakos.com/pot/programming_algorithm/number_theory/barlekamp_massey template<class T> std::vector<T> Berlekamp_Massey(std::vector<T> s){ std::vector<T> C={1}, B={1}; int L = 0; int m = 1; T b = 1; for (int n = 0; n < int(s.size()); n++){ T d = 0; for (int j = 0; j < L + 1; j++){ d += C[j] * s[n - j]; } if (d == 0){ m++; continue; } T iv = d / b; if (2 * L <= n){ auto tC = C; while (int(C.size()) <= n + 1 - L) C.push_back(0); for (int i = 0; i < int(B.size()); i++) C[i + m] -= iv * B[i]; B = tC; L = n + 1 - L; b = d; m = 1; } else{ for(int i = 0; i < int(B.size()); i++){ C[i + m] -= iv * B[i]; } m++; } } return C; } // https://nyaannyaan.github.io/library/matrix/black-box-linear-algebra.hpp template<class T> T det_sparse_matrix(std::vector<std::vector<T>> A, T mj = 0){ int n = A.size(); std::vector<T> D; struct pos_mat{ int x; int y; T val; }; std::vector<pos_mat> p; for (int i = 0; i < n; i++){ for(int j = 0; j < n; j++) if (A[i][j] != mj) { p.push_back({i, j, A[i][j] - mj}); } } while (true){ while (true){ D = rand_vec<T>(n); bool ok = 1; for (auto x: D) if (x == 0) ok = 0; if (ok) break; } std::vector<pos_mat> AD = p; for (int i = 0; i < int(AD.size()); i++) AD[i].val *= D[AD[i].y]; std::vector<T> u = rand_vec<T>(n), v = rand_vec<T>(n); std::vector<T> b(n); std::vector<T> a(2 * n + 1); b = u; for (int i = 0; i < 2 * n + 1; i++){ T sum = 0; for (int j = 0; j < n; j++){ sum += u[j] * D[j]; a[i] += u[j] * v[j]; } sum *= mj; for (int j = 0; j < n; j++){ u[j] = sum; } for (pos_mat tmp: AD){ u[tmp.x] += tmp.val * b[tmp.y]; } b = u; } auto mp = Berlekamp_Massey(a); if (mp.back() == 0) return 0; if (int(mp.size()) != n + 1) continue; T res = mp.back(); if (n & 1) res *= -1; T tmp = 1; for (auto d: D) tmp *= d; return res / tmp; } } } namespace po167{ template<class S> std::vector<S> count_outdeg(std::vector<std::vector<S>> &G){ int N = G.size(); std::vector<S> outdeg(N); for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) outdeg[i] += G[i][j]; return outdeg; } template<class S> std::vector<S> count_indeg(std::vector<std::vector<S>> &G){ int N = G.size(); std::vector<S> indeg(N); for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) indeg[j] += G[i][j]; return indeg; } // O(|M|^{3}) template<class T> T det_matrix(std::vector<std::vector<T>> M){ int N = M.size(); if (N == 0) return 1; if (N == 1) return M[0][0]; if (N == 2) return M[0][0] * M[1][1] - M[0][1] * M[1][0]; T res = 1; for (int i = 0; i < N; i++){ for (int j = i; j < N; j++){ if (M[j][i] != 0){ if (j != i){ swap(M[i], M[j]); res *= -1; } break; } } if (M[i][i] == 0) return 0; res *= M[i][i]; if (i + 1 == N) break; T v = 1 / M[i][i]; for (int j = i + 1; j < N; j++){ T t = M[j][i] * v; for (int k = i; k < N; k++){ M[j][k] -= M[i][k] * t; } } } return res; } template<class T,class S> std::vector<std::vector<T>> Directed_Matrix_tree_Theorem_sub(std::vector<std::vector<S>> &G, int u = 0){ int N = G.size(); std::vector L(N - 1, std::vector<T>(N - 1, 0)); std::vector<S> outdeg(N); for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) if (i != j) outdeg[i] += G[i][j]; for (int i = 0; i < N; i++) for (int j = 0; j < N; j++){ if (i == u || j == u) continue; int a = i, b = j; if (u < i) a--; if (u < j) b--; if (i == j) L[a][b] = outdeg[i]; else L[a][b] -= G[i][j]; } return L; } template<class T,class S> T Directed_Matrix_tree_Theorem(std::vector<std::vector<S>> &G, int u = 0){ if (int(G.size()) == 1) return T(1); return det_matrix(Directed_Matrix_tree_Theorem_sub<T>(G, u)); } // s.t // forall i,j // 0 <= G[i][j] // if not connected // use remove iso template<class T,class S> std::pair<T, std::vector<std::vector<T>>> Count_Euler_Circuit_sub(std::vector<std::vector<S>> G, std::vector<T> &fact_base, bool fact_in = true){ int N = G.size(); std::vector<S> outdeg = count_outdeg(G); std::vector<S> indeg = count_indeg(G); // indeg == outdeg ? for (int i = 0; i < N; i++) if (indeg[i] != outdeg[i]) return {0, {{1}}}; // connected ? std::vector<bool> seen(N); std::vector<int> order={0}; seen[0] = 1; for (int i = 0; i < N; i++){ if (i == int(order.size())) return {0, {{1}}}; for (int j = 0; j < N; j++){ if (G[order[i]][j] != 0 && !seen[j]){ seen[j] = 1; order.push_back(j); } } } T res = 1; if (fact_in) for (int i = 0; i < N; i++) res *= fact_base[outdeg[i] - 1]; return {res ,Directed_Matrix_tree_Theorem_sub<T, S>(G)}; } template<class T,class S> T Count_Euler_Circuit(std::vector<std::vector<S>> G, std::vector<T> &fact_base, bool fact_in = true){ auto tmp = Count_Euler_Circuit_sub(G, fact_base, fact_in); if (tmp.first == 0) return T(0); return tmp.first * det_matrix(tmp.second); } template<class S> std::vector<std::vector<S>> remove_isolated_vertex( std::vector<std::vector<S>> G ){ int N = G.size(); std::vector<int> seen(N, -1); for (int i = 0; i < N; i++) for (int j = 0; j < N; j++){ if (G[i][j] != 0) seen[i] = 1, seen[j] = 1; } int ind = 0; for (int i = 0; i < N; i++) if (seen[i] == 1) seen[i] = ind++; std::vector res(ind, std::vector<S>(ind)); for (int i = 0; i < N; i++) if (seen[i] != -1){ for (int j = 0; j < N; j++) if (seen[j] != -1){ res[seen[i]][seen[j]] = G[i][j]; } } return res; } // s.t // forall i,j // 0 <= G[i][j] // if not connected // use remove iso template<class T,class S> std::pair<T, std::vector<std::vector<T>>> Count_Eulerian_Trail_sub(std::vector<std::vector<S>> G,std::vector<T> &fact_base, bool fact_in = true){ bool ok = 1; int N = G.size(); std::vector<S> outdeg = count_outdeg(G), indeg = count_indeg(G); S sum = 0; for (int i = 0; i < N; i++){ sum += outdeg[i]; } int st = -1, ed = -1; for (int i = 0; i < N; i++) if (outdeg[i] != indeg[i]){ if (std::abs(outdeg[i] - indeg[i]) > 1){ ok = 0; break; } if (outdeg[i] > indeg[i]){ if (ed != -1) ok = 0; ed = i; } else { if (st != -1) ok = 0; st = i; } } if (!ok) return {0, {{1}}}; if ((st == -1) ^ (ed == -1)) return {0, {{1}}}; if (st == -1){ auto tmp = Count_Euler_Circuit_sub(G, fact_base, fact_in); return {T(sum) * tmp.first, tmp.second}; } G[st][ed]++; return Count_Euler_Circuit_sub(G, fact_base, fact_in); } template<class T,class S> T Count_Eulerian_Trail(std::vector<std::vector<S>> G,std::vector<T> &fact_base, bool fact_in = true){ auto tmp = Count_Eulerian_Trail_sub<T, S>(G, fact_base, fact_in); if (tmp.first == 0) return 0; return tmp.first * det_matrix(tmp.second); } } namespace po167{ template<class T> struct Binomial{ std::vector<T> fact_vec, fact_inv_vec; void extend(int m = -1){ int n = fact_vec.size(); if (m == -1) m = n * 2; if (n >= m) return; fact_vec.resize(m); fact_inv_vec.resize(m); for (int i = n; i < m; i++){ fact_vec[i] = fact_vec[i - 1] * T(i); } fact_inv_vec[m - 1] = T(1) / fact_vec[m - 1]; for (int i = m - 1; i > n; i--){ fact_inv_vec[i - 1] = fact_inv_vec[i] * T(i); } } Binomial(int MAX = 2){ fact_vec.resize(1, T(1)); fact_inv_vec.resize(1, T(1)); extend(MAX + 1); } T fact(int i){ if (i < 0) return 0; while (int(fact_vec.size()) <= i) extend(); return fact_vec[i]; } T invfact(int i){ if (i < 0) return 0; while (int(fact_inv_vec.size()) <= i) extend(); return fact_inv_vec[i]; } T C(int a, int b){ if (a < b || b < 0) return 0; return fact(a) * invfact(b) * invfact(a - b); } T invC(int a, int b){ if (a < b || b < 0) return 0; return fact(b) * fact(a - b) *invfact(a); } T P(int a, int b){ if (a < b || b < 0) return 0; return fact(a) * invfact(a - b); } T inv(int a){ if (a < 0) return inv(-a) * T(-1); if (a == 0) return 1; return fact(a - 1) * invfact(a); } }; } struct mint{ static constexpr int m = 1000000007; int x; mint() : x(0){} mint(long long x_):x(x_ % m){if (x < 0) x += m;} int val(){return x;} mint &operator+=(mint b){if ((x += b.x) >= m) x -= m; return *this;} mint &operator-=(mint b){if ((x -= b.x) < 0) x += m; return *this;} mint &operator*=(mint b){x= (long long)(x) * b.x % m; return *this;} mint pow(long long e) const { mint r = 1,b =*this; while (e){ if (e & 1) r *= b; b *= b; e >>= 1; } return r; } mint inv(){return pow(m - 2);} mint &operator/=(mint b){return *this *= b.pow(m - 2);} friend mint operator+(mint a, mint b){return a += b;} friend mint operator-(mint a, mint b){return a -= b;} friend mint operator/(mint a, mint b){return a /= b;} friend mint operator*(mint a, mint b){return a *= b;} friend bool operator==(mint a, mint b){return a.x == b.x;} friend bool operator!=(mint a, mint b){return a.x != b.x;} }; int solve_yuki_0310(int N, int M, std::vector<int> A, std::vector<int> B){ if (N * N == M) return 1; std::vector G(N ,std::vector<int>(N, 1)); for (int i = 0; i < M; i++){ G[A[i] - 1][B[i] - 1] = 0; } po167::Binomial<mint> bin(N + 100); auto tmp = po167::Count_Eulerian_Trail_sub(po167::remove_isolated_vertex(G), bin.fact_vec); return (tmp.first * po167::det_sparse_matrix<mint>(tmp.second , -1)).val(); } int main(){ int N, M; std::cin >> N >> M; std::vector<int> A(M), B(M); for (int i = 0; i < M; i++) std::cin >> A[i] >> B[i]; std::cout << solve_yuki_0310(N, M, A, B) << "\n"; }