結果

問題 No.1547 [Cherry 2nd Tune *] 偶然の勝利の確率
ユーザー ゆにぽけゆにぽけ
提出日時 2024-02-23 08:28:44
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 127 ms / 2,000 ms
コード長 5,110 bytes
コンパイル時間 1,385 ms
コンパイル使用メモリ 141,912 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-09-29 04:54:00
合計ジャッジ時間 3,896 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 6 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 1 ms
5,248 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 2 ms
5,248 KB
testcase_13 AC 21 ms
5,248 KB
testcase_14 AC 15 ms
5,248 KB
testcase_15 AC 7 ms
5,248 KB
testcase_16 AC 11 ms
5,248 KB
testcase_17 AC 10 ms
5,248 KB
testcase_18 AC 10 ms
5,248 KB
testcase_19 AC 4 ms
5,248 KB
testcase_20 AC 66 ms
5,248 KB
testcase_21 AC 7 ms
5,248 KB
testcase_22 AC 2 ms
5,248 KB
testcase_23 AC 118 ms
5,248 KB
testcase_24 AC 127 ms
5,248 KB
testcase_25 AC 119 ms
5,248 KB
testcase_26 AC 122 ms
5,248 KB
testcase_27 AC 119 ms
5,248 KB
testcase_28 AC 118 ms
5,248 KB
testcase_29 AC 118 ms
5,248 KB
testcase_30 AC 117 ms
5,248 KB
testcase_31 AC 117 ms
5,248 KB
testcase_32 AC 119 ms
5,248 KB
testcase_33 AC 122 ms
5,248 KB
testcase_34 AC 9 ms
5,248 KB
testcase_35 AC 9 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <vector>
#include <algorithm>
#include <array>
#include <iterator>
#include <string>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <cassert>
#include <cmath>
#include <ctime>
#include <iomanip>
#include <numeric>
#include <stack>
#include <queue>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <bitset>
#include <random>
#include <utility>
#include <functional>
using namespace std;
template<int m> struct modint
{
	private:
	unsigned int value;
	static constexpr int mod() {return m;}

	public:
	constexpr modint(const long long x = 0) noexcept
	{
		long long y = x;
		if(y < 0 || y >= mod())
		{
			y %= mod();
			if(y < 0) y += mod();
		}
		value = (unsigned int)y;
	}
	static constexpr int get_mod() noexcept {return m;}
	static constexpr int primitive_root() noexcept
	{
		assert(m == 998244353);
		return 3;
	}
	constexpr unsigned int val() noexcept {return value;}
	constexpr modint &operator+=(const modint &other) noexcept
	{
		value += other.value;
		if(value >= mod()) value -= mod();
		return *this;
	}
	constexpr modint &operator-=(const modint &other) noexcept
	{
		unsigned int x = value;
		if(x < other.value) x += mod();
		x -= other.value;
		value = x;
		return *this;
	}
	constexpr modint &operator*=(const modint &other) noexcept
	{
		unsigned long long x = value;
		x *= other.value;
		value = (unsigned int) (x % mod());
		return *this;
	}
	constexpr modint &operator/=(const modint &other) noexcept
	{
		return *this *= other.inverse();
	}
	constexpr modint inverse() const noexcept
	{
		assert(value);
		long long a = value,b = mod(),x = 1,y = 0;
		while(b)
		{
			long long q = a/b;
			a -= q*b; swap(a,b);
			x -= q*y; swap(x,y);
		}
		return modint(x);
	}
	constexpr modint power(long long N) const noexcept
	{
		assert(N >= 0);
		modint p = *this,ret = 1;
		while(N)
		{
			if(N & 1) ret *= p;
			p *= p;
			N >>= 1;
		}
		return ret;
	}
	constexpr modint operator+() {return *this;}
	constexpr modint operator-() {return modint() - *this;}
	constexpr modint &operator++(int) noexcept {return *this += 1;}
	constexpr modint &operator--(int) noexcept {return *this -= 1;}
	friend modint operator+(const modint& lhs, const modint& rhs) {return modint(lhs) += rhs;}
	friend modint operator-(const modint& lhs, const modint& rhs) {return modint(lhs) -= rhs;}
	friend modint operator*(const modint& lhs, const modint& rhs) {return modint(lhs) *= rhs;}
	friend modint operator/(const modint& lhs, const modint& rhs) {return modint(lhs) /= rhs;}
	friend ostream &operator<<(ostream &os,const modint &x) {return os << x.value;}
};
using mint = modint<998244353>;
/* using mint = modint<1000000007>; */
template<class T> struct Matrix
{
	private:
	vector<vector<T>> M;
	int H,W;

	public:
	static const Matrix e(int N)
	{
		Matrix ret(N,N);
		for(int i = 0;i < N;i++) ret[i][i] = 1;
		return ret;
	};
	constexpr Matrix(int h,int w,T x = 0) noexcept
	{
		H = h,W = w;
		M.assign(H,vector<T>(W,x));
	}

	constexpr vector<T> &operator[](const int i) noexcept
	{
		assert(0 <= i && i < H);
		return M[i];
	}

	constexpr vector<T> operator[](const int i) const
	{
		assert(0 <= i && i < H);
		return M[i];
	}

	constexpr Matrix &operator*=(const Matrix &rhs) noexcept
	{
		assert(W == rhs.H);
		Matrix tmp(H,rhs.W);
		for(int i = 0;i < H;i++)
		{
			for(int j = 0;j < rhs.W;j++)
			{
				for(int k = 0;k < W;k++)
				{
					tmp[i][j] += M[i][k] * rhs.M[k][j];
				}
			}
		}
		swap(*this,tmp);
		return *this;
	}

	constexpr Matrix power(long long N) noexcept
	{
		assert(H == W);
		assert(N >= 0);
		Matrix res = e(H),P = *this;
		while(N)
		{
			if(N & 1) res *= P;
			P *= P;
			N >>= 1;
		}
		return res;
	};

	friend Matrix operator*(const Matrix &lhs,const Matrix &rhs)
	{
		return Matrix(lhs) *= rhs;
	}

	friend ostream &operator<<(ostream &os,const Matrix &x)
	{
		for(int i = 0;i < x.H;i++)
		{
			for(int j = 0;j < x.W;j++)
			{
				os << x.M[i][j] << (i + 1 < x.H && j + 1 == x.W ? "\n":" ");
			}
		}
		return os;
	}
};
/* using mat = Matrix<mint>; */

void Main()
{
	mint P,Q;
	int S,T;
	{
		int M,N;
		cin >> M >> N >> S;
		P = mint(M) / N;
	}
	{
		int M,N;
		cin >> M >> N >> T;
		Q = mint(M) / N;
	}
	vector<mint> X(110),Y(110);
	X[0] = Y[0] = 1;
	for(int i = 1;i < 110;i++)
	{
		X[i] = X[i - 1] * P;
		Y[i] = Y[i - 1] * Q;
	}
	int K;
	cin >> K;
	Matrix<mint> M(S + T + 1,S + T + 1);
	for(int i = -T;i <= S;i++)
	{
		if(i == -T || i == S)
		{
			M[i + T][i + T] = 1;
			continue;
		}
		for(int j = -T;j <= S;j++)
		{
			if(j == S)
			{
				M[j + T][i + T] = P.power(S - i);
			}
			else if(j == -T)
			{
				for(int k = i;k < S;k++)
				{
					M[j + T][i + T] += X[k - i] * (1 - P) * Y[k + T];
				}
			}
			else
			{
				for(int k = max(i,j);k < S;k++)
				{
					M[j + T][i + T] += X[k - i] * (1 - P) * Y[k - j] * (1 - Q);
				}
			}
		}
	}
	Matrix<mint> dp(S + T + 1,1);
	dp[T][0] = 1;
	dp = M.power(K) * dp;
	cout << dp[S + T][0] << "\n";
	cout << dp[0][0] << "\n";
}
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	int tt = 1;
	/* cin >> tt; */
	while(tt--) Main();
}

0