結果
問題 | No.2634 Tree Distance 3 |
ユーザー | ZrjaK |
提出日時 | 2024-02-23 12:30:11 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,321 ms / 3,000 ms |
コード長 | 31,867 bytes |
コンパイル時間 | 5,701 ms |
コンパイル使用メモリ | 329,804 KB |
実行使用メモリ | 53,296 KB |
最終ジャッジ日時 | 2024-09-29 05:03:13 |
合計ジャッジ時間 | 57,380 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 954 ms
40,164 KB |
testcase_01 | AC | 996 ms
39,336 KB |
testcase_02 | AC | 967 ms
39,300 KB |
testcase_03 | AC | 944 ms
35,384 KB |
testcase_04 | AC | 971 ms
41,808 KB |
testcase_05 | AC | 785 ms
35,396 KB |
testcase_06 | AC | 799 ms
38,204 KB |
testcase_07 | AC | 776 ms
38,116 KB |
testcase_08 | AC | 923 ms
39,868 KB |
testcase_09 | AC | 975 ms
37,716 KB |
testcase_10 | AC | 994 ms
37,676 KB |
testcase_11 | AC | 927 ms
37,076 KB |
testcase_12 | AC | 868 ms
34,912 KB |
testcase_13 | AC | 843 ms
36,268 KB |
testcase_14 | AC | 760 ms
34,836 KB |
testcase_15 | AC | 779 ms
39,108 KB |
testcase_16 | AC | 698 ms
30,348 KB |
testcase_17 | AC | 393 ms
18,960 KB |
testcase_18 | AC | 506 ms
21,944 KB |
testcase_19 | AC | 602 ms
26,608 KB |
testcase_20 | AC | 178 ms
11,144 KB |
testcase_21 | AC | 741 ms
32,820 KB |
testcase_22 | AC | 744 ms
32,792 KB |
testcase_23 | AC | 731 ms
32,808 KB |
testcase_24 | AC | 882 ms
37,728 KB |
testcase_25 | AC | 859 ms
34,548 KB |
testcase_26 | AC | 914 ms
38,312 KB |
testcase_27 | AC | 757 ms
36,900 KB |
testcase_28 | AC | 764 ms
39,408 KB |
testcase_29 | AC | 755 ms
33,888 KB |
testcase_30 | AC | 940 ms
39,480 KB |
testcase_31 | AC | 986 ms
45,296 KB |
testcase_32 | AC | 959 ms
42,192 KB |
testcase_33 | AC | 381 ms
31,336 KB |
testcase_34 | AC | 76 ms
11,752 KB |
testcase_35 | AC | 213 ms
20,740 KB |
testcase_36 | AC | 120 ms
14,200 KB |
testcase_37 | AC | 248 ms
22,232 KB |
testcase_38 | AC | 5 ms
6,816 KB |
testcase_39 | AC | 5 ms
6,820 KB |
testcase_40 | AC | 3 ms
6,820 KB |
testcase_41 | AC | 4 ms
6,816 KB |
testcase_42 | AC | 4 ms
6,816 KB |
testcase_43 | AC | 331 ms
16,152 KB |
testcase_44 | AC | 224 ms
13,832 KB |
testcase_45 | AC | 1,162 ms
51,112 KB |
testcase_46 | AC | 601 ms
26,700 KB |
testcase_47 | AC | 1,132 ms
43,268 KB |
testcase_48 | AC | 1,171 ms
45,444 KB |
testcase_49 | AC | 1,173 ms
42,472 KB |
testcase_50 | AC | 1,211 ms
42,332 KB |
testcase_51 | AC | 1,321 ms
53,296 KB |
testcase_52 | AC | 1,169 ms
42,856 KB |
testcase_53 | AC | 6 ms
6,820 KB |
testcase_54 | AC | 6 ms
6,816 KB |
testcase_55 | AC | 5 ms
6,816 KB |
testcase_56 | AC | 5 ms
6,820 KB |
testcase_57 | AC | 6 ms
6,816 KB |
testcase_58 | AC | 2 ms
6,820 KB |
testcase_59 | AC | 2 ms
6,824 KB |
testcase_60 | AC | 1,015 ms
40,092 KB |
testcase_61 | AC | 998 ms
36,664 KB |
testcase_62 | AC | 1,069 ms
41,492 KB |
testcase_63 | AC | 864 ms
33,552 KB |
testcase_64 | AC | 559 ms
23,148 KB |
testcase_65 | AC | 819 ms
32,584 KB |
testcase_66 | AC | 218 ms
12,304 KB |
testcase_67 | AC | 179 ms
10,872 KB |
testcase_68 | AC | 733 ms
32,760 KB |
testcase_69 | AC | 734 ms
32,752 KB |
testcase_70 | AC | 728 ms
33,656 KB |
ソースコード
#ifdef ONLINE_JUDGE #pragma GCC optimize("Ofast,unroll-loops") #pragma GCC target("avx2,popcnt") #endif #include <bits/stdc++.h> using namespace std; using ll = long long; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; using u128 = __uint128_t; using f128 = __float128; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; using vi = vector<int>; using vvi = vector<vector<int>>; using vll = vector<ll>; using vvll = vector<vector<ll>>; using vpii = vector<pii>; using vpll = vector<pll>; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'000'000'000; template <> constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = std::priority_queue<T>; template <class T> using pqg = std::priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) \ vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector<vector<vector<type>>> name( \ h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name( \ a, vector<vector<vector<type>>>( \ b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) #define lb lower_bound #define ub upper_bound #define pb push_back #define eb emplace_back #define fi first #define se second #define mp make_pair #define mt make_tuple #define stoi stoll #define overload4(_1, _2, _3, _4, name, ...) name #define overload3(_1, _2, _3, name, ...) name #define rep1(n) for(ll _ = 0; _ < n; ++_) #define rep2(i, n) for(ll i = 0; i < n; ++i) #define rep3(i, a, b) for(ll i = a; i < b; ++i) #define rep4(i, a, b, c) for(int i = a; i < b; i += c) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1) (__VA_ARGS__) #define rrep1(n) for(ll i = n; i--; ) #define rrep2(i, n) for(ll i = n; i--; ) #define rrep3(i, a, b) for(ll i = a; i > b; i--) #define rrep4(i, a, b, c) for(ll i = a; i > b; i -= c) #define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1) (__VA_ARGS__) #define each1(i, a) for(auto&& i : a) #define each2(x, y, a) for(auto&& [x, y] : a) #define each3(x, y, z, a) for(auto&& [x, y, z] : a) #define each(...) overload4(__VA_ARGS__, each3, each2, each1) (__VA_ARGS__) #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1) (__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R) (__VA_ARGS__) #define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define len(x) ll(x.size()) #define elif else if #define all1(i) begin(i), end(i) #define all2(i, a) begin(i), begin(i) + a #define all3(i, a, b) begin(i) + a, begin(i) + b #define all(...) overload3(__VA_ARGS__, all3, all2, all1) (__VA_ARGS__) #define rall1(i) rbegin(i), rend(i) #define rall2(i, a) rbegin(i), rbegin(i) + a #define rall3(i, a, b) rbegin(i) + a, rbegin(i) + b #define rall(...) overload3(__VA_ARGS__, rall3, rall2, rall1) (__VA_ARGS__) #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() #define SORT(a) sort(all(a)) #define REV(a) reverse(all(a)) int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_mod_2(int x) { return __builtin_parity(x); } int popcnt_mod_2(u32 x) { return __builtin_parity(x); } int popcnt_mod_2(ll x) { return __builtin_parityll(x); } int popcnt_mod_2(u64 x) { return __builtin_parityll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template<class T> auto max(const T& a){ return *max_element(all(a)); } template<class T> auto min(const T& a){ return *min_element(all(a)); } template <typename T, typename U> T ceil(T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); } template <typename T, typename U> T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); } template <typename T, typename U> pair<T, T> divmod(T x, U y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sum = 0; for (auto &&a: A) sum += a; return sum; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); for (int i = 0; i < N; i++) B[i + 1] = B[i] + A[i]; if (off == 0) B.erase(B.begin()); return B; } template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { assert(!que.empty()); T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { assert(!que.empty()); T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { while (iter--) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } #define FASTIO #include <unistd.h> // https://judge.yosupo.jp/submission/21623 namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template <typename T> void rd_real(T &x) { string s; rd(s); x = stod(s); } template <typename T> void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(u32 &x) { rd_integer(x); } void rd(u64 &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } void rd(f128 &x) { rd_real(x); } template <class T, class U> void rd(pair<T, U> &p) { return rd(p.first), rd(p.second); } template <size_t N = 0, typename T> void rd_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); rd(x); rd_tuple<N + 1>(t); } } template <class... T> void rd(tuple<T...> &tpl) { rd_tuple(tpl); } template <size_t N = 0, typename T> void rd(array<T, N> &x) { for (auto &d: x) rd(d); } template <class T> void rd(vc<T> &x) { for (auto &d: x) rd(d); } void read() {} template <class H, class... T> void read(H &h, T &... t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c: s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template <typename T> void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template <typename T> void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(u32 x) { wt_integer(x); } void wt(u64 x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } void wt(f128 x) { wt_real(x); } template <class T, class U> void wt(const pair<T, U> val) { wt(val.first); wt(' '); wt(val.second); } template <size_t N = 0, typename T> void wt_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get<N>(t); wt(x); wt_tuple<N + 1>(t); } } template <class... T> void wt(tuple<T...> tpl) { wt_tuple(tpl); } template <class T, size_t S> void wt(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template <class T> void wt(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward<Tail>(tail)...); } // gcc expansion. called automaticall after main. void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::read; using fastio::print; using fastio::flush; #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } template <typename Iterable> auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(fastio::wt(*v.begin())) { for (auto it = v.begin(); it != v.end();) { fastio::wt(*it); if (++it != v.end()) fastio::wt(sep); } fastio::wt(end); } vvi getGraph(int n, int m, bool directed = false) { vvi res(n); rep(_, 0, m) { INT(u, v); u--, v--; res[u].emplace_back(v); if(!directed) res[v].emplace_back(u); } return res; } vector<vpii> getWeightedGraph(int n, int m, bool directed = false) { vector<vpii> res(n); rep(_, 0, m) { INT(u, v, w); u--, v--; res[u].emplace_back(v, w); if(!directed) res[v].emplace_back(u, w); } return res; } template <class... Args> auto ndvector(size_t n, Args &&...args) { if constexpr (sizeof...(args) == 1) { return vector(n, args...); } else { return vector(n, ndvector(args...)); } } #line 2 "graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); if (len(used_e) != M) used_e.assign(M, 0); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 3 "graph/shortest_path/bfs01.hpp" template <typename T, typename GT> pair<vc<T>, vc<int>> bfs01(GT& G, int v) { assert(G.is_prepared()); int N = G.N; vc<T> dist(N, infty<T>); vc<int> par(N, -1); deque<int> que; dist[v] = 0; que.push_front(v); while (!que.empty()) { auto v = que.front(); que.pop_front(); for (auto&& e: G[v]) { if (dist[e.to] == infty<T> || dist[e.to] > dist[e.frm] + e.cost) { dist[e.to] = dist[e.frm] + e.cost; par[e.to] = e.frm; if (e.cost == 0) que.push_front(e.to); else que.push_back(e.to); } } } return {dist, par}; } // 多点スタート。[dist, par, root] template <typename T, typename GT> tuple<vc<T>, vc<int>, vc<int>> bfs01(GT& G, vc<int> vs) { assert(G.is_prepared()); int N = G.N; vc<T> dist(N, infty<T>); vc<int> par(N, -1); vc<int> root(N, -1); deque<int> que; for (auto&& v: vs) { dist[v] = 0; root[v] = v; que.push_front(v); } while (!que.empty()) { auto v = que.front(); que.pop_front(); for (auto&& e: G[v]) { if (dist[e.to] == infty<T> || dist[e.to] > dist[e.frm] + e.cost) { dist[e.to] = dist[e.frm] + e.cost; root[e.to] = root[e.frm]; par[e.to] = e.frm; if (e.cost == 0) que.push_front(e.to); else que.push_back(e.to); } } } return {dist, par, root}; } #line 3 "graph/centroid_decomposition.hpp" // 頂点ベースの重心分解 // f(par, V, indptr) template <typename F> void centroid_decomposition_0_dfs(vc<int>& par, vc<int>& vs, F f) { const int N = len(par); assert(N >= 1); int c = -1; vc<int> sz(N, 1); FOR_R(i, N) { if (sz[i] >= ceil<int>(N, 2)) { c = i; break; } sz[par[i]] += sz[i]; } vc<int> color(N); vc<int> V = {c}; int nc = 1; FOR(v, 1, N) { if (par[v] == c) { V.eb(v), color[v] = nc++; } } if (c > 0) { for (int a = par[c]; a != -1; a = par[a]) { color[a] = nc, V.eb(a); } ++nc; } FOR(i, N) { if (i != c && color[i] == 0) color[i] = color[par[i]], V.eb(i); } vc<int> indptr(nc + 1); FOR(i, N) indptr[1 + color[i]]++; FOR(i, nc) indptr[i + 1] += indptr[i]; vc<int> counter = indptr; vc<int> ord(N); for (auto& v: V) { ord[counter[color[v]]++] = v; } vc<int> new_idx(N); FOR(i, N) new_idx[ord[i]] = i; vc<int> name(N); FOR(i, N) name[new_idx[i]] = vs[i]; { vc<int> tmp(N, -1); FOR(i, 1, N) { int a = new_idx[i], b = new_idx[par[i]]; if (a > b) swap(a, b); tmp[b] = a; } swap(par, tmp); } f(par, name, indptr); FOR(k, 1, nc) { int L = indptr[k], R = indptr[k + 1]; vc<int> par1(R - L, -1); vc<int> name1(R - L, -1); name1[0] = name[0]; FOR(i, L, R) name1[i - L] = name[i]; FOR(i, L, R) { par1[i - L] = max(par[i] - L, -1); } centroid_decomposition_0_dfs(par1, name1, f); } } /* https://maspypy.com/%e9%87%8d%e5%bf%83%e5%88%86%e8%a7%a3%e3%83%bb1-3%e9%87%8d%e5%bf%83%e5%88%86%e8%a7%a3%e3%81%ae%e3%81%8a%e7%b5%b5%e6%8f%8f%e3%81%8d centroid_decomposition_1:長さ 2 以上のパス全体 f(par, V, n1, n2) [1,1+n1]: color 1 [1+n1,1+n1+n2]: color 2 */ template <typename F> void centroid_decomposition_1_dfs(vc<int>& par, vc<int> vs, F f) { const int N = len(par); assert(N > 1); if (N == 2) { return; } int c = -1; vc<int> sz(N, 1); FOR_R(i, N) { if (sz[i] >= ceil<int>(N, 2)) { c = i; break; } sz[par[i]] += sz[i]; } vc<int> color(N, -1); int take = 0; vc<int> ord(N, -1); ord[c] = 0; int p = 1; FOR(v, 1, N) { if (par[v] == c && take + sz[v] <= floor<int>(N - 1, 2)) { color[v] = 0, ord[v] = p++, take += sz[v]; } } FOR(i, 1, N) { if (color[par[i]] == 0) color[i] = 0, ord[i] = p++; } int n0 = p - 1; for (int a = par[c]; a != -1; a = par[a]) { color[a] = 1, ord[a] = p++; } FOR(i, N) { if (i != c && color[i] == -1) color[i] = 1, ord[i] = p++; } assert(p == N); int n1 = N - 1 - n0; vc<int> par0(n0 + 1, -1), par1(n1 + 1, -1), par2(N, -1); vc<int> V0(n0 + 1), V1(n1 + 1), V2(N); FOR(v, N) { int i = ord[v]; V2[i] = vs[v]; if (color[v] != 1) { V0[i] = vs[v]; } if (color[v] != 0) { V1[max(i - n0, 0)] = vs[v]; } } FOR(v, 1, N) { int a = ord[v], b = ord[par[v]]; if (a > b) swap(a, b); par2[b] = a; if (color[v] != 1 && color[par[v]] != 1) par0[b] = a; if (color[v] != 0 && color[par[v]] != 0) par1[max(b - n0, 0)] = max(a - n0, 0); } f(par2, V2, n0, n1); centroid_decomposition_1_dfs(par0, V0, f); centroid_decomposition_1_dfs(par1, V1, f); } /* https://maspypy.com/%e9%87%8d%e5%bf%83%e5%88%86%e8%a7%a3%e3%83%bb1-3%e9%87%8d%e5%bf%83%e5%88%86%e8%a7%a3%e3%81%ae%e3%81%8a%e7%b5%b5%e6%8f%8f%e3%81%8d f(par2, V2, color) color in [-1,0,1], -1 is virtual. */ template <typename F> void centroid_decomposition_2_dfs(vc<int>& par, vc<int>& vs, vc<int>& real, F f) { const int N = len(par); assert(N > 1); if (N == 2) { if (real[0] && real[1]) { vc<int> color = {0, 1}; f(par, vs, color); } return; } int c = -1; vc<int> sz(N, 1); FOR_R(i, N) { if (sz[i] >= ceil<int>(N, 2)) { c = i; break; } sz[par[i]] += sz[i]; } vc<int> color(N, -1); int take = 0; vc<int> ord(N, -1); ord[c] = 0; int p = 1; FOR(v, 1, N) { if (par[v] == c && take + sz[v] <= floor<int>(N - 1, 2)) { color[v] = 0, ord[v] = p++, take += sz[v]; } } FOR(i, 1, N) { if (color[par[i]] == 0) color[i] = 0, ord[i] = p++; } int n0 = p - 1; for (int a = par[c]; a != -1; a = par[a]) { color[a] = 1, ord[a] = p++; } FOR(i, N) { if (i != c && color[i] == -1) color[i] = 1, ord[i] = p++; } assert(p == N); int n1 = N - 1 - n0; vc<int> par0(n0 + 1, -1), par1(n1 + 1, -1), par2(N, -1); vc<int> V0(n0 + 1), V1(n1 + 1), V2(N); vc<int> rea0(n0 + 1), rea1(n1 + 1), rea2(N); FOR(v, N) { int i = ord[v]; V2[i] = vs[v], rea2[i] = real[v]; if (color[v] != 1) { V0[i] = vs[v], rea0[i] = real[v]; } if (color[v] != 0) { V1[max(i - n0, 0)] = vs[v], rea1[max(i - n0, 0)] = real[v]; } } FOR(v, 1, N) { int a = ord[v], b = ord[par[v]]; if (a > b) swap(a, b); par2[b] = a; if (color[v] != 1 && color[par[v]] != 1) par0[b] = a; if (color[v] != 0 && color[par[v]] != 0) par1[max(b - n0, 0)] = max(a - n0, 0); } if (real[c]) { color.assign(N, -1); color[0] = 0; FOR(i, 1, N) color[i] = rea2[i] ? 1 : -1; f(par2, V2, color); rea0[0] = rea1[0] = rea2[0] = 0; } color.assign(N, -1); FOR(i, 1, N) if (rea2[i]) color[i] = (i <= n0 ? 0 : 1); f(par2, V2, color); centroid_decomposition_2_dfs(par0, V0, rea0, f); centroid_decomposition_2_dfs(par1, V1, rea1, f); } // f(par, V, color) // V: label in original tree, dfs order // color in [-1,0,1], color=-1: virtual template <int MODE, typename GT, typename F> void centroid_decomposition(GT& G, F f) { const int N = G.N; if (N == 1) return; vc<int> V(N), par(N, -1); int l = 0, r = 0; V[r++] = 0; while (l < r) { int v = V[l++]; for (auto& e: G[v]) { if (e.to != par[v]) V[r++] = e.to, par[e.to] = v; } } assert(r == N); vc<int> new_idx(N); FOR(i, N) new_idx[V[i]] = i; vc<int> tmp(N, -1); FOR(i, 1, N) { int j = par[i]; tmp[new_idx[i]] = new_idx[j]; } swap(par, tmp); static_assert(MODE == 0 || MODE == 1 || MODE == 2); if constexpr (MODE == 0) { centroid_decomposition_0_dfs(par, V, f); } elif constexpr(MODE == 1) { centroid_decomposition_1_dfs(par, V, f); } else { vc<int> real(N, 1); centroid_decomposition_2_dfs(par, V, real, f); } } #line 2 "ds/segtree/segtree.hpp" template <class Monoid> struct SegTree { using MX = Monoid; using X = typename MX::value_type; using value_type = X; vc<X> dat; int n, log, size; SegTree() {} SegTree(int n) { build(n); } template <typename F> SegTree(int n, F f) { build(n, f); } SegTree(const vc<X>& v) { build(v); } void build(int m) { build(m, [](int i) -> X { return MX::unit(); }); } void build(const vc<X>& v) { build(len(v), [&](int i) -> X { return v[i]; }); } template <typename F> void build(int m, F f) { n = m, log = 1; while ((1 << log) < n) ++log; size = 1 << log; dat.assign(size << 1, MX::unit()); FOR(i, n) dat[size + i] = f(i); FOR_R(i, 1, size) update(i); } X get(int i) { return dat[size + i]; } vc<X> get_all() { return {dat.begin() + size, dat.begin() + size + n}; } void update(int i) { dat[i] = Monoid::op(dat[2 * i], dat[2 * i + 1]); } void set(int i, const X& x) { assert(i < n); dat[i += size] = x; while (i >>= 1) update(i); } void multiply(int i, const X& x) { assert(i < n); i += size; dat[i] = Monoid::op(dat[i], x); while (i >>= 1) update(i); } X prod(int L, int R) { assert(0 <= L && L <= R && R <= n); X vl = Monoid::unit(), vr = Monoid::unit(); L += size, R += size; while (L < R) { if (L & 1) vl = Monoid::op(vl, dat[L++]); if (R & 1) vr = Monoid::op(dat[--R], vr); L >>= 1, R >>= 1; } return Monoid::op(vl, vr); } X prod_all() { return dat[1]; } template <class F> int max_right(F check, int L) { assert(0 <= L && L <= n && check(Monoid::unit())); if (L == n) return n; L += size; X sm = Monoid::unit(); do { while (L % 2 == 0) L >>= 1; if (!check(Monoid::op(sm, dat[L]))) { while (L < size) { L = 2 * L; if (check(Monoid::op(sm, dat[L]))) { sm = Monoid::op(sm, dat[L++]); } } return L - size; } sm = Monoid::op(sm, dat[L++]); } while ((L & -L) != L); return n; } template <class F> int min_left(F check, int R) { assert(0 <= R && R <= n && check(Monoid::unit())); if (R == 0) return 0; R += size; X sm = Monoid::unit(); do { --R; while (R > 1 && (R % 2)) R >>= 1; if (!check(Monoid::op(dat[R], sm))) { while (R < size) { R = 2 * R + 1; if (check(Monoid::op(dat[R], sm))) { sm = Monoid::op(dat[R--], sm); } } return R + 1 - size; } sm = Monoid::op(dat[R], sm); } while ((R & -R) != R); return 0; } // prod_{l<=i<r} A[i xor x] X xor_prod(int l, int r, int xor_val) { static_assert(Monoid::commute); X x = Monoid::unit(); for (int k = 0; k < log + 1; ++k) { if (l >= r) break; if (l & 1) { x = Monoid::op(x, dat[(size >> k) + ((l++) ^ xor_val)]); } if (r & 1) { x = Monoid::op(x, dat[(size >> k) + ((--r) ^ xor_val)]); } l /= 2, r /= 2, xor_val /= 2; } return x; } }; #line 2 "alg/monoid/max.hpp" template <typename E> struct Monoid_Max { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return max(x, y); } static constexpr X unit() { return -infty<E>; } static constexpr bool commute = true; }; void solve() { INT(N); VEC(int, A, N); vi nums = A; UNIQUE(nums); each(i, A) i = LB(nums, i); Graph G(N); G.read_tree(); vll ans(N); auto f = [&](vc<int>& par, vc<int>& V, int n1, int n2) -> void { int n = 1 + n1 + n2; assert(len(V) == n); vi B; rep(i, n) B.pb(A[V[i]]); vi nums = B; UNIQUE(nums); each(i, B) i = LB(nums, i); vi dep(n); rep(i, 1, n) dep[i] = dep[par[i]] + 1; auto F = [&](int L1, int R1, int L2, int R2) -> void { SegTree<Monoid_Max<ll>> X(n); X.multiply(B[0], dep[0]); rep(i, L1, R1) { X.multiply(B[i], dep[i]); } rep(i, L2, R2) { chmax(ans[V[i]], X.prod(B[i], n) + dep[i]); } }; F(1, 1 + n1, 1 + n1, 1 + n1 + n2); F(1 + n1, 1 + n1 + n2, 1, 1 + n1); }; centroid_decomposition<1>(G, f); each(e, G.edges) { if (A[e.frm] <= A[e.to]) chmax(ans[e.frm], 1); if (A[e.to] <= A[e.frm]) chmax(ans[e.to], 1); } print(ans); } signed main() { int T = 1; // read(T); while (T--) { solve(); } return 0; }