結果
| 問題 |
No.2647 [Cherry 6th Tune A] Wind
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-02-23 21:22:39 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 7,739 bytes |
| コンパイル時間 | 1,323 ms |
| コンパイル使用メモリ | 132,940 KB |
| 最終ジャッジ日時 | 2025-02-19 19:17:48 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 1 WA * 13 |
ソースコード
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdint>
#include <cstring>
#include <ctime>
#include <deque>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <vector>
template <int mod>
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt &operator^=(long long p) { // quick_pow here:3
ModInt res = 1;
for (; p; p >>= 1) {
if (p & 1) res *= *this;
*this *= *this;
}
return *this = res;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
ModInt operator^(long long p) const { return ModInt(*this) ^= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
explicit operator int() const { return x; } // added by QCFium
ModInt operator=(const int p) {
x = p;
return ModInt(*this);
} // added by QCFium
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
a -= t * b;
std::swap(a, b);
u -= t * v;
std::swap(u, v);
}
return ModInt(u);
}
friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &p) {
return os << p.x;
}
friend std::istream &operator>>(std::istream &is, ModInt<mod> &a) {
long long x;
is >> x;
a = ModInt<mod>(x);
return (is);
}
};
using mint = ModInt<998244353>;
const int MOD = 998244353;
struct MComb {
std::vector<mint> fact;
std::vector<mint> inversed;
MComb(int n) { // O(n+log(mod))
fact = std::vector<mint>(n + 1, 1);
for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * mint(i);
inversed = std::vector<mint>(n + 1);
inversed[n] = fact[n] ^ (MOD - 2);
for (int i = n - 1; i >= 0; i--)
inversed[i] = inversed[i + 1] * mint(i + 1);
}
mint ncr(int n, int r) {
if (n < r) return 0;
return (fact[n] * inversed[r] * inversed[n - r]);
}
mint npr(int n, int r) { return (fact[n] * inversed[n - r]); }
mint nhr(int n, int r) {
assert(n + r - 1 < (int)fact.size());
return ncr(n + r - 1, r);
}
};
mint ncr(int n, int r) {
mint res = 1;
for (int i = n - r + 1; i <= n; i++) res *= i;
for (int i = 1; i <= r; i++) res /= i;
return res;
}
int noinit = 1;
long long memo[2005][2005];
long long nCr(long long n, long long r) {
if (noinit) {
for (int i = 0; i < 2005; i++) {
for (int j = 0; j < 2005; j++) {
memo[i][j] = -1;
noinit = 0;
}
}
}
if (r == 0 || n == r) return 1;
if (0 <= memo[n][r]) return memo[n][r];
return memo[n][r] = nCr(n - 1, r - 1) + nCr(n - 1, r);
}
/*
mint res = (mint(2) ^ n) - 1 - ncr(n, a) - ncr(n, b);
std::cout << res << std::endl;
*/
std::vector<bool> prime_table(int n) {
std::vector<bool> prime(n + 1, true);
if (n >= 0) prime[0] = false;
if (n >= 1) prime[1] = false;
for (int i = 2; i * i <= n; i++) {
if (!prime[i]) continue;
for (int j = i * i; j <= n; j += i) {
prime[j] = false;
}
}
return prime;
}
std::vector<int> enumerate_primes(int n) {
if (n <= 1) return {};
auto d = prime_table(n);
std::vector<int> primes;
primes.reserve(count(begin(d), end(d), true));
for (int i = 0; i < d.size(); i++) {
if (d[i]) primes.push_back(i);
}
return primes;
}
template <typename T>
std::vector<T> get_divisors(T x, bool sorted = true) {
std::vector<T> res;
for (T i = 1; i <= x / i; i++)
if (x % i == 0) {
res.push_back(i);
if (i != x / i) res.push_back(x / i);
}
if (sorted) std::sort(res.begin(), res.end());
return res;
}
template <class Type>
class WeightedUnionFind {
public:
WeightedUnionFind() = default;
/// @brief 重み付き Union-Find 木を構築します。
/// @param n 要素数
explicit WeightedUnionFind(size_t n)
: m_parentsOrSize(n, -1), m_diffWeights(n) {}
/// @brief 頂点 i の root のインデックスを返します。
/// @param i 調べる頂点のインデックス
/// @return 頂点 i の root のインデックス
int find(int i) {
if (m_parentsOrSize[i] < 0) {
return i;
}
const int root = find(m_parentsOrSize[i]);
m_diffWeights[i] += m_diffWeights[m_parentsOrSize[i]];
// 経路圧縮
return (m_parentsOrSize[i] = root);
}
/// @brief a のグループと b のグループを統合します。
/// @param a 一方のインデックス
/// @param b 他方のインデックス
/// @param w (b の重み) - (a の重み)
void merge(int a, int b, Type w) {
w += weight(a);
w -= weight(b);
a = find(a);
b = find(b);
if (a != b) {
// union by size (小さいほうが子になる)
if (-m_parentsOrSize[a] < -m_parentsOrSize[b]) {
std::swap(a, b);
w = -w;
}
m_parentsOrSize[a] += m_parentsOrSize[b];
m_parentsOrSize[b] = a;
m_diffWeights[b] = w;
}
}
/// @brief (b の重み) - (a の重み) を返します。
/// @param a 一方のインデックス
/// @param b 他方のインデックス
/// @remark a と b が同じグループに属さない場合の結果は不定です。
/// @return (b の重み) - (a の重み)
Type diff(int a, int b) { return (weight(b) - weight(a)); }
/// @brief a と b が同じグループに属すかを返します。
/// @param a 一方のインデックス
/// @param b 他方のインデックス
/// @return a と b が同じグループに属す場合 true, それ以外の場合は false
bool connected(int a, int b) { return (find(a) == find(b)); }
/// @brief i が属するグループの要素数を返します。
/// @param i インデックス
/// @return i が属するグループの要素数
int size(int i) { return -m_parentsOrSize[find(i)]; }
private:
// m_parentsOrSize[i] は i の 親,
// ただし root の場合は (-1 * そのグループに属する要素数)
std::vector<int> m_parentsOrSize;
// 重み
std::vector<Type> m_diffWeights;
Type weight(int i) {
find(i); // 経路圧縮
return m_diffWeights[i];
}
};
template <typename T>
struct DSU {
std::vector<T> f, siz;
DSU(int n) : f(n), siz(n, 1) { std::iota(f.begin(), f.end(), 0); }
T leader(T x) {
while (x != f[x]) x = f[x] = f[f[x]];
return x;
}
bool same(T x, T y) { return leader(x) == leader(y); }
bool merge(T x, T y) {
x = leader(x);
y = leader(y);
if (x == y) return false;
siz[x] += siz[y];
f[y] = x;
return true;
}
T size(int x) { return siz[leader(x)]; }
};
void solve() {
long long n, d;
std::cin >> n >> d;
for (int i = 0; i < n; i++) {
long long x;
std::cin >> x;
std::cout << x / d << ' ';
}
std::cout << std::endl;
}
int main() {
int t = 1;
std::cin >> t;
while (t--) {
solve();
}
}