結果
問題 | No.2651 [Cherry 6th Tune B] $\mathbb{C}$omplex комбинат |
ユーザー | 👑 emthrm |
提出日時 | 2024-02-24 02:56:46 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 192 ms / 2,500 ms |
コード長 | 5,657 bytes |
コンパイル時間 | 2,795 ms |
コンパイル使用メモリ | 250,064 KB |
実行使用メモリ | 5,760 KB |
最終ジャッジ日時 | 2024-09-29 09:46:54 |
合計ジャッジ時間 | 10,246 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 169 ms
5,248 KB |
testcase_03 | AC | 169 ms
5,248 KB |
testcase_04 | AC | 166 ms
5,248 KB |
testcase_05 | AC | 170 ms
5,248 KB |
testcase_06 | AC | 175 ms
5,248 KB |
testcase_07 | AC | 172 ms
5,248 KB |
testcase_08 | AC | 189 ms
5,248 KB |
testcase_09 | AC | 191 ms
5,248 KB |
testcase_10 | AC | 191 ms
5,248 KB |
testcase_11 | AC | 179 ms
5,248 KB |
testcase_12 | AC | 168 ms
5,248 KB |
testcase_13 | AC | 166 ms
5,248 KB |
testcase_14 | AC | 169 ms
5,248 KB |
testcase_15 | AC | 192 ms
5,248 KB |
testcase_16 | AC | 171 ms
5,248 KB |
testcase_17 | AC | 168 ms
5,248 KB |
testcase_18 | AC | 166 ms
5,248 KB |
testcase_19 | AC | 167 ms
5,376 KB |
testcase_20 | AC | 177 ms
5,248 KB |
testcase_21 | AC | 50 ms
5,248 KB |
testcase_22 | AC | 87 ms
5,248 KB |
testcase_23 | AC | 114 ms
5,248 KB |
testcase_24 | AC | 144 ms
5,248 KB |
testcase_25 | AC | 11 ms
5,248 KB |
testcase_26 | AC | 80 ms
5,248 KB |
testcase_27 | AC | 166 ms
5,504 KB |
testcase_28 | AC | 122 ms
5,248 KB |
testcase_29 | AC | 51 ms
5,248 KB |
testcase_30 | AC | 14 ms
5,248 KB |
testcase_31 | AC | 139 ms
5,248 KB |
testcase_32 | AC | 22 ms
5,248 KB |
testcase_33 | AC | 130 ms
5,248 KB |
testcase_34 | AC | 76 ms
5,248 KB |
testcase_35 | AC | 150 ms
5,504 KB |
testcase_36 | AC | 129 ms
5,248 KB |
testcase_37 | AC | 166 ms
5,760 KB |
testcase_38 | AC | 134 ms
5,632 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; // constexpr int MOD = 1000000007; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <unsigned int M> struct MInt { unsigned int v; constexpr MInt() : v(0) {} constexpr MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {} static constexpr MInt raw(const int x) { MInt x_; x_.v = x; return x_; } static constexpr int get_mod() { return M; } static constexpr void set_mod(const int divisor) { assert(std::cmp_equal(divisor, M)); } static void init(const int x) { inv<true>(x); fact(x); fact_inv(x); } template <bool MEMOIZES = false> static MInt inv(const int n) { // assert(0 <= n && n < M && std::gcd(n, M) == 1); static std::vector<MInt> inverse{0, 1}; const int prev = inverse.size(); if (n < prev) return inverse[n]; if constexpr (MEMOIZES) { // "n!" and "M" must be disjoint. inverse.resize(n + 1); for (int i = prev; i <= n; ++i) { inverse[i] = -inverse[M % i] * raw(M / i); } return inverse[n]; } int u = 1, v = 0; for (unsigned int a = n, b = M; b;) { const unsigned int q = a / b; std::swap(a -= q * b, b); std::swap(u -= q * v, v); } return u; } static MInt fact(const int n) { static std::vector<MInt> factorial{1}; if (const int prev = factorial.size(); n >= prev) { factorial.resize(n + 1); for (int i = prev; i <= n; ++i) { factorial[i] = factorial[i - 1] * i; } } return factorial[n]; } static MInt fact_inv(const int n) { static std::vector<MInt> f_inv{1}; if (const int prev = f_inv.size(); n >= prev) { f_inv.resize(n + 1); f_inv[n] = inv(fact(n).v); for (int i = n; i > prev; --i) { f_inv[i - 1] = f_inv[i] * i; } } return f_inv[n]; } static MInt nCk(const int n, const int k) { if (n < 0 || n < k || k < 0) [[unlikely]] return MInt(); return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) : fact_inv(n - k) * fact_inv(k)); } static MInt nPk(const int n, const int k) { return n < 0 || n < k || k < 0 ? MInt() : fact(n) * fact_inv(n - k); } static MInt nHk(const int n, const int k) { return n < 0 || k < 0 ? MInt() : (k == 0 ? 1 : nCk(n + k - 1, k)); } static MInt large_nCk(long long n, const int k) { if (n < 0 || n < k || k < 0) [[unlikely]] return MInt(); inv<true>(k); MInt res = 1; for (int i = 1; i <= k; ++i) { res *= inv(i) * n--; } return res; } constexpr MInt pow(long long exponent) const { MInt res = 1, tmp = *this; for (; exponent > 0; exponent >>= 1) { if (exponent & 1) res *= tmp; tmp *= tmp; } return res; } constexpr MInt& operator+=(const MInt& x) { if ((v += x.v) >= M) v -= M; return *this; } constexpr MInt& operator-=(const MInt& x) { if ((v += M - x.v) >= M) v -= M; return *this; } constexpr MInt& operator*=(const MInt& x) { v = (unsigned long long){v} * x.v % M; return *this; } MInt& operator/=(const MInt& x) { return *this *= inv(x.v); } constexpr auto operator<=>(const MInt& x) const = default; constexpr MInt& operator++() { if (++v == M) [[unlikely]] v = 0; return *this; } constexpr MInt operator++(int) { const MInt res = *this; ++*this; return res; } constexpr MInt& operator--() { v = (v == 0 ? M - 1 : v - 1); return *this; } constexpr MInt operator--(int) { const MInt res = *this; --*this; return res; } constexpr MInt operator+() const { return *this; } constexpr MInt operator-() const { return raw(v ? M - v : 0); } constexpr MInt operator+(const MInt& x) const { return MInt(*this) += x; } constexpr MInt operator-(const MInt& x) const { return MInt(*this) -= x; } constexpr MInt operator*(const MInt& x) const { return MInt(*this) *= x; } MInt operator/(const MInt& x) const { return MInt(*this) /= x; } friend std::ostream& operator<<(std::ostream& os, const MInt& x) { return os << x.v; } friend std::istream& operator>>(std::istream& is, MInt& x) { long long v; is >> v; x = MInt(v); return is; } }; using ModInt = MInt<MOD>; void solve() { int n; cin >> n; vector<int> x(n), y(n); REP(i, n) cin >> x[i] >> y[i]; ModInt a = 0, b = 0; REP(i, n) a += x[i] * x[i] + y[i] * y[i]; REP(i, n) b += ModInt::inv(x[i] * x[i] + y[i] * y[i]); ModInt c_real = 0, c_imag = 0, d_real = 0, d_imag = 0; REP(i, n) { const ModInt den = ModInt::inv(x[i] * x[i] + y[i] * y[i]); c_real += den * (x[i] * x[i] - y[i] * y[i]); c_imag += den * 2 * x[i] * y[i]; d_real += den * (x[i] * x[i] - y[i] * y[i]); d_imag += den * 2 * x[i] * y[i]; } cout << a * b - (c_real * d_real + c_imag * d_imag) << '\n'; } int main() { int t; cin >> t; while (t--) solve(); return 0; }