結果

問題 No.2361 Many String Compare Queries
ユーザー 草苺奶昔草苺奶昔
提出日時 2024-02-25 19:42:52
言語 Go
(1.22.1)
結果
AC  
実行時間 385 ms / 2,500 ms
コード長 21,352 bytes
コンパイル時間 19,129 ms
コンパイル使用メモリ 235,820 KB
実行使用メモリ 135,060 KB
最終ジャッジ日時 2024-09-29 11:08:36
合計ジャッジ時間 23,838 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,820 KB
testcase_01 AC 1 ms
6,816 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 1 ms
6,820 KB
testcase_04 AC 1 ms
6,816 KB
testcase_05 AC 1 ms
6,816 KB
testcase_06 AC 1 ms
6,816 KB
testcase_07 AC 2 ms
6,816 KB
testcase_08 AC 280 ms
43,672 KB
testcase_09 AC 348 ms
57,408 KB
testcase_10 AC 302 ms
50,740 KB
testcase_11 AC 370 ms
135,060 KB
testcase_12 AC 385 ms
133,916 KB
testcase_13 AC 339 ms
132,252 KB
testcase_14 AC 282 ms
113,140 KB
testcase_15 AC 297 ms
86,924 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

package main

import (
	"bufio"
	"fmt"
	"index/suffixarray"
	"os"
	"reflect"
	"sort"
	"unsafe"
)

func main() {
	// demo()

	// cf123d()
	// cf427d()
	// cf802I()
	// cf873F()

	// P3181()
	// p3804()
	// p4341()
	// p5341()

	yukicoder2361()
}

// https://oi-wiki.org/string/suffix-tree/
func demo() {
	// s := "cabab"
	s := "abbbab"
	sa, _, lcp := SuffixArray32(int32(len(s)), func(i int32) int32 { return int32(s[i]) })
	suffixTree, ranges := SuffixTreeFrom(sa, lcp)
	fmt.Println(suffixTree, ranges)
	start, end := RecoverSubstring(sa, 3, 1, 3)
	fmt.Println(s[start:end])
}

// CF123D String
// https://www.luogu.com.cn/problem/CF123D
// !枚举字符串 s 的每一个本质不同的子串 ss ,令 cnt(ss) 为子串 ss 在字符串 s 中出现的个数,求 ∑ cnt(ss)*(cnt(ss)+1)/2
// 建立后缀树,可以得到每个节点对应后缀数组上的 [行1,行2,列1,列2] 矩形区域.
// !(行2-行1) 表示此startPos出现次数, (列2-列1) 表示结点包含的压缩的字符串长度(个数).
func cf123d() {
	in := bufio.NewReader(os.Stdin)
	out := bufio.NewWriter(os.Stdout)
	defer out.Flush()

	var s string
	fmt.Fscan(in, &s)
	_, ranges := SuffixTree(int32(len(s)), func(i int32) int32 { return int32(s[i]) })
	res := 0
	for i := 1; i < len(ranges); i++ {
		rowStart, rowEnd, colStart, colEnd := ranges[i][0], ranges[i][1], ranges[i][2], ranges[i][3]
		freq, nodeCount := int(rowEnd-rowStart), int(colEnd-colStart)
		res += (freq * (freq + 1) / 2) * nodeCount
	}
	fmt.Fprintln(out, res)
}

// Match & Catch
// https://www.luogu.com.cn/problem/CF427D
// 求两个串的最短公共唯一子串
// 令s12 := s1 + "#" + s2,遍历后缀树,对每个结点统计belong即可.
func cf427d() {
	in := bufio.NewReader(os.Stdin)
	out := bufio.NewWriter(os.Stdout)
	defer out.Flush()

	const INF int32 = 1e9
	var s1, s2 string
	fmt.Fscan(in, &s1, &s2)
	n1 := int32(len(s1))
	s12 := s1 + "#" + s2
	sa, _, height := SuffixArray32(int32(len(s12)), func(i int32) int32 { return int32(s12[i]) })
	tree, ranges := SuffixTreeFrom(sa, height)

	res := INF
	var dfs func(cur int32)
	dfs = func(cur int32) {
		rowStart, rowEnd, colStart, colEnd := ranges[cur][0], ranges[cur][1], ranges[cur][2], ranges[cur][3]
		freq, nodeCount := rowEnd-rowStart, colEnd-colStart
		if nodeCount > 0 && freq == 2 {
			belong1, belong2 := 0, 0
			for i := rowStart; i < rowEnd; i++ {
				if sa[i] < n1 {
					belong1++
				} else if sa[i] > n1 {
					belong2++
				}
			}
			if belong1 == 1 && belong2 == 1 {
				minLength := colStart + 1
				res = min32(res, minLength)
			}
		}
		for _, v := range tree[cur] {
			dfs(v)
		}
	}
	dfs(0)

	if res == INF {
		res = -1
	}
	fmt.Fprintln(out, res)
}

// Fake News (hard)
// https://www.luogu.com.cn/problem/CF802I
// 给出 s,求所有 s 的本质不同子串 ss 在 s 中的出现次数平方和,重复的子串只算一次。
// 同cf123d
func cf802I() {
	in := bufio.NewReader(os.Stdin)
	out := bufio.NewWriter(os.Stdout)
	defer out.Flush()

	solve := func() {
		var s string
		fmt.Fscan(in, &s)
		_, ranges := SuffixTree(int32(len(s)), func(i int32) int32 { return int32(s[i]) })
		res := 0
		for i := 1; i < len(ranges); i++ {
			rowStart, rowEnd, colStart, colEnd := ranges[i][0], ranges[i][1], ranges[i][2], ranges[i][3]
			freq, nodeCount := int(rowEnd-rowStart), int(colEnd-colStart)
			res += (freq * freq) * nodeCount
		}
		fmt.Fprintln(out, res)
	}

	var T int
	fmt.Fscan(in, &T)
	for ; T > 0; T-- {
		solve()
	}
}

// Forbidden Indices
// https://codeforces.com/problemset/problem/873/F
// 给出一个字符串 s,一个 01 串,长度均为 n(n≤2e5).
// !设 ss 为 s 的一个子串,求 `ss长度*不在被禁止位置结束的子串ss出现次数` 的最大值。
//
// 取反串,限制条件就变成了`不在被禁止位置开始的子串ss出现次数`, 转换成`禁止一些后缀`.
// 建立后缀树即可.
func cf873F() {
	in := bufio.NewReader(os.Stdin)
	out := bufio.NewWriter(os.Stdout)
	defer out.Flush()

	var n int
	fmt.Fscan(in, &n)
	var s string
	fmt.Fscan(in, &s)
	var forbidden string
	fmt.Fscan(in, &forbidden)

	s, forbidden = reverseString(s), reverseString(forbidden)
	sa, _, height := SuffixArray32(int32(len(s)), func(i int32) int32 { return int32(s[i]) })
	ok := make([]bool, n) // 按照sa数组顺序的ok的后缀起点.
	for i := 0; i < n; i++ {
		j := sa[i]
		ok[i] = forbidden[j] == '0'
	}
	okPreSum := make([]int, n+1)
	for i := 1; i <= n; i++ {
		okPreSum[i] = okPreSum[i-1]
		if ok[i-1] {
			okPreSum[i]++
		}
	}

	_, ranges := SuffixTreeFrom(sa, height)
	res := 0
	for i := 1; i < len(ranges); i++ {
		rowStart, rowEnd := ranges[i][0], ranges[i][1]
		freq := okPreSum[rowEnd] - okPreSum[rowStart]
		length := int(ranges[i][3])
		res = max(res, freq*length)
	}
	fmt.Fprintln(out, res)
}

// P3181 [HAOI2016] 找相同字符
// 求两个字符的相同子串对数.两个方案不同当且仅当这两个子串中有一个位置不同。
// https://www.luogu.com.cn/problem/P3181
//
// 令s12 := s1 + "#" + s2,遍历后缀树,对每个结点统计belong即可.
func P3181() {
	in := bufio.NewReader(os.Stdin)
	out := bufio.NewWriter(os.Stdout)
	defer out.Flush()

	var s1, s2 string
	fmt.Fscan(in, &s1, &s2)
	n1 := int32(len(s1))
	s12 := s1 + "#" + s2
	sa, _, height := SuffixArray32(int32(len(s12)), func(i int32) int32 { return int32(s12[i]) })
	tree, ranges := SuffixTreeFrom(sa, height)

	res := 0
	var dfs func(cur int32)
	dfs = func(cur int32) {
		rowStart, rowEnd, colStart, colEnd := ranges[cur][0], ranges[cur][1], ranges[cur][2], ranges[cur][3]
		freq, nodeCount := rowEnd-rowStart, colEnd-colStart
		if nodeCount > 0 && freq >= 2 {
			belong1, belong2 := 0, 0
			for i := rowStart; i < rowEnd; i++ {
				if sa[i] < n1 {
					belong1++
				} else if sa[i] > n1 {
					belong2++
				}
			}
			res += int(belong1) * int(belong2) * int(nodeCount)
		}
		for _, v := range tree[cur] {
			dfs(v)
		}
	}
	dfs(0)
	fmt.Fprintln(out, res)
}

// P3804 【模板】后缀自动机(SAM)
// https://www.luogu.com.cn/problem/P3804
// 请你求出 S 的所有出现次数不为 1 的子串的出现次数乘上该子串长度的最大值
func p3804() {
	in := bufio.NewReader(os.Stdin)
	out := bufio.NewWriter(os.Stdout)
	defer out.Flush()

	var s string
	fmt.Fscan(in, &s)
	tree, ranges := SuffixTree(int32(len(s)), func(i int32) int32 { return int32(s[i]) })
	res := 0

	var dfs func(cur int32)
	dfs = func(cur int32) {
		freq, nodeCount := ranges[cur][1]-ranges[cur][0], ranges[cur][3]-ranges[cur][2]
		if nodeCount > 0 && freq > 1 {
			maxLength := int(ranges[cur][3])
			res = max(res, maxLength*int(freq))
		}
		for _, v := range tree[cur] {
			dfs(v)
		}
	}
	dfs(0)

	fmt.Fprintln(out, res)
}

// P4341 [BJWC2010] 外星联络
// https://www.luogu.com.cn/problem/P4341
// 给一个字符串求所以出现次数大于 1 的子串所出现的次数。输出的顺序按对应的子串的字典序排列。
func p4341() {
	in := bufio.NewReader(os.Stdin)
	out := bufio.NewWriter(os.Stdout)
	defer out.Flush()

	var n int
	fmt.Fscan(in, &n)
	var s string
	fmt.Fscan(in, &s)

	tree, ranges := SuffixTree(int32(len(s)), func(i int32) int32 { return int32(s[i]) })
	var res []int32
	var dfs func(cur int32)
	dfs = func(cur int32) {
		freq, nodeCount := ranges[cur][1]-ranges[cur][0], ranges[cur][3]-ranges[cur][2]
		if freq > 1 {
			for i := int32(0); i < nodeCount; i++ {
				res = append(res, freq)
			}
		}
		for _, v := range tree[cur] {
			dfs(v)
		}
	}
	dfs(0)
	for _, v := range res {
		fmt.Fprintln(out, v)
	}
}

// P5341 [TJOI2019] 甲苯先生和大中锋的字符串
// https://www.luogu.com.cn/problem/P5341
// 给定字符串s, 求出现 k 次的子串中出现次数的最多的长度。如果不存在子串出现 k 次,则输出 −1 。
func p5341() {
	in := bufio.NewReader(os.Stdin)
	out := bufio.NewWriter(os.Stdout)
	defer out.Flush()

	solve := func(s string, k int32) int {
		tree, ranges := SuffixTree(int32(len(s)), func(i int32) int32 { return int32(s[i]) })

		lengthCounter := make([]int, len(s)+2)
		add := func(min int32, max int32, val int) {
			lengthCounter[min] += val
			lengthCounter[max+1] -= val
		}
		build := func() {
			for i := 1; i < len(lengthCounter); i++ {
				lengthCounter[i] += lengthCounter[i-1]
			}
		}

		var dfs func(cur int32)
		dfs = func(cur int32) {
			freq, nodeCount := ranges[cur][1]-ranges[cur][0], ranges[cur][3]-ranges[cur][2]
			if nodeCount > 0 && freq == k {
				minLength, maxLength := ranges[cur][2]+1, ranges[cur][3]
				add(minLength, maxLength, 1)
			}
			for _, v := range tree[cur] {
				dfs(v)
			}
		}
		dfs(0)

		build()
		res, maxCount := -1, -1
		for i, v := range lengthCounter {
			if v > 0 && v >= maxCount {
				maxCount = v
				res = i
			}
		}
		return res
	}

	var T int
	fmt.Fscan(in, &T)
	for ; T > 0; T-- {
		var s string
		var k int32
		fmt.Fscan(in, &s, &k)
		fmt.Fprintln(out, solve(s, k))
	}
}

// TODO
// 1923. 最长公共子路径(多个结点的最长公共子串)
// https://leetcode.cn/problems/longest-common-subpath/solution/hou-zhui-shu-zu-er-fen-da-an-by-endlessc-ocar/
func longestCommonSubpath(n int, paths [][]int) int {
	path32 := make([][]int32, len(paths))
	for i, p := range paths {
		for _, v := range p {
			path32[i] = append(path32[i], int32(v))
		}
	}
	return 0
}

// https://yukicoder.me/problems/no/2361
// 给定一个长为n的字符串s和q个询问.
// 每个询问给出一个区间[start,end), 问有多少个子串的字典序严格小于s[start:end).
//
// !1.将查询的子串 s[start:end) 表示为"起点为start的后缀的长为(end-start)的一个前缀".
// !2.离线查询,按照后缀起点将查询分组,便于后续按照字典序遍历查询.
// !3.线段树维护sa数组上的查询长度最小值, 每次将查询长度最小的查询取出,保证遍历后缀树节点时可以按照字典序处理查询.
func yukicoder2361() {
	in := bufio.NewReader(os.Stdin)
	out := bufio.NewWriter(os.Stdout)
	defer out.Flush()

	var n, q int32
	fmt.Fscan(in, &n, &q)
	var s string
	fmt.Fscan(in, &s)
	queries := make([][2]int32, q)
	for i := range queries {
		fmt.Fscan(in, &queries[i][0], &queries[i][1])
		queries[i][0]--
	}

	sa, rank, height := SuffixArray32(n, func(i int32) int32 { return int32(s[i]) })
	type pair struct{ length, qid int32 } // 长度, 询问id
	queryGroups := make([][]pair, n)      // 按照sa数组下标分组
	for i := range queries {
		start, end := queries[i][0], queries[i][1]
		saIndex := rank[start]
		queryGroups[saIndex] = append(queryGroups[saIndex], pair{length: end - start, qid: int32(i)})
	}
	for _, group := range queryGroups {
		// 长度短的查询排在数组末尾,先取出
		sort.Slice(group, func(i, j int) bool { return group[i].length > group[j].length })
	}
	seg := NewSegmentTree(int(n), func(i int) E { return E{value: INF32, index: -1} }) // !维护每个saIndex对应的查询长度最小值
	updateRMQ := func(saIndex int32) {
		group := queryGroups[saIndex]
		if len(group) == 0 {
			seg.Set(int(saIndex), E{value: INF32, index: -1})
		} else {
			minLength := group[len(group)-1].length
			seg.Set(int(saIndex), E{value: minLength, index: saIndex})
		}
	}
	for i := int32(0); i < n; i++ {
		updateRMQ(i)
	}

	res := make([]int, q)
	suffixTree, ranges := SuffixTreeFrom(sa, height)
	smaller := 0
	var dfs func(cur int32)
	dfs = func(cur int32) {
		rowStart, rowEnd, colStart, colEnd := int(ranges[cur][0]), int(ranges[cur][1]), int(ranges[cur][2]), int(ranges[cur][3])
		freq, nodeCount := rowEnd-rowStart, colEnd-colStart
		minLength, maxLength := colStart+1, colEnd

		// !按照字典序取出存在于当前结点(矩形)内部的所有查询
		for {
			item := seg.Query(rowStart, rowEnd)
			queryLength, saIndex := int(item.value), item.index
			if queryLength > maxLength {
				break
			}
			group := &queryGroups[saIndex]
			qid := (*group)[len(*group)-1].qid
			*group = (*group)[:len(*group)-1]
			updateRMQ(saIndex)

			res[qid] = smaller + freq*(queryLength-minLength) // 整个矩形区域的子串个数
		}

		smaller += freq * nodeCount
		for _, next := range suffixTree[cur] {
			dfs(next)
		}
	}
	dfs(0)

	for _, v := range res {
		fmt.Fprintln(out, v)
	}
}

// directTree: 后缀树, 从 0 开始编号, 0 结点为虚拟根节点.
// ranges: 每个结点对应后缀数组上的 [行1,行2,列1,列2] 矩形区域.
// !(行2-行1) 表示此startPos出现次数, (列2-列1) 表示结点包含的压缩的字符串长度(个数).
// 对应后缀sa编号: [rowStart, rowEnd)
// 对应字符串长度: [colStart+1, colEnd+1)
func SuffixTree(n int32, f func(i int32) int32) (directedTree [][]int32, ranges [][4]int32) {
	sa, _, lcp := SuffixArray32(n, f)
	return SuffixTreeFrom(sa, lcp)
}

// 每个节点为后缀数组上的一个矩形区间.
func SuffixTreeFrom(sa, height []int32) (directedTree [][]int32, ranges [][4]int32) {
	height = height[1:]
	n := int32(len(sa))
	if n == 1 {
		directedTree = make([][]int32, 2)
		directedTree[0] = append(directedTree[0], 1)
		ranges = append(ranges, [4]int32{0, 1, 0, 0})
		ranges = append(ranges, [4]int32{0, 1, 0, 1})
		return
	}

	var edges [][2]int32
	ranges = append(ranges, [4]int32{0, n, 0, 0})
	ct := NewCartesianTreeSimple32(height)

	var dfs func(p, idx int32, h int32)
	dfs = func(p, idx int32, h int32) {
		left, right := ct.Range[idx][0], ct.Range[idx][1]+1
		hh := height[idx]
		if h < hh {
			m := int32(len(ranges))
			edges = append(edges, [2]int32{p, m})
			p = m
			ranges = append(ranges, [4]int32{left, right, h, hh})
		}

		if ct.leftChild[idx] == -1 {
			if hh < n-sa[idx] {
				edges = append(edges, [2]int32{p, int32(len(ranges))})
				ranges = append(ranges, [4]int32{idx, idx + 1, hh, n - sa[idx]})
			}
		} else {
			dfs(p, ct.leftChild[idx], hh)
		}

		if ct.rigthChild[idx] == -1 {
			if hh < n-sa[idx+1] {
				edges = append(edges, [2]int32{p, int32(len(ranges))})
				ranges = append(ranges, [4]int32{idx + 1, idx + 2, hh, n - sa[idx+1]})
			}
		} else {
			dfs(p, ct.rigthChild[idx], hh)
		}
	}

	root := ct.Root
	if height[root] > 0 {
		edges = append(edges, [2]int32{0, 1})
		ranges = append(ranges, [4]int32{0, n, 0, height[root]})
		dfs(1, root, height[root])
	} else {
		dfs(0, root, 0)
	}

	directedTree = make([][]int32, len(ranges))
	for _, e := range edges {
		u, v := e[0], e[1]
		directedTree[u] = append(directedTree[u], v)
	}
	return
}

// 给定后缀数组上的范围 [row, colStart, colEnd],求出这个区间对应的字符串s[start:end)。
func RecoverSubstring(sa []int32, row int32, colStart, colEnd int32) (start, end int32) {
	start = sa[row] + colStart
	end = sa[row] + colEnd
	return
}

func SuffixArray32(n int32, f func(i int32) int32) (sa, rank, height []int32) {
	s := make([]byte, 0, n*4)
	for i := int32(0); i < n; i++ {
		v := f(i)
		s = append(s, byte(v>>24), byte(v>>16), byte(v>>8), byte(v))
	}
	_sa := *(*[]int32)(unsafe.Pointer(reflect.ValueOf(suffixarray.New(s)).Elem().FieldByName("sa").Field(0).UnsafeAddr()))
	sa = make([]int32, 0, n)
	for _, v := range _sa {
		if v&3 == 0 {
			sa = append(sa, v>>2)
		}
	}
	rank = make([]int32, n)
	for i := int32(0); i < n; i++ {
		rank[sa[i]] = i
	}
	height = make([]int32, n)
	h := int32(0)
	for i := int32(0); i < n; i++ {
		rk := rank[i]
		if h > 0 {
			h--
		}
		if rk > 0 {
			for j := sa[rk-1]; i+h < n && j+h < n && f(i+h) == f(j+h); h++ {
			}
		}
		height[rk] = h
	}
	return
}

type CartesianTreeSimple32 struct {
	// ![left, right) 每个元素作为最大/最小值时的左右边界.
	//  左侧为严格扩展, 右侧为非严格扩展.
	//  例如: [2, 1, 1, 5] => [[0 1] [0 4] [2 4] [3 4]]
	Range                         [][2]int32
	Root                          int32
	n                             int32
	nums                          []int32
	leftChild, rigthChild, parent []int32
}

// min
func NewCartesianTreeSimple32(nums []int32) *CartesianTreeSimple32 {
	res := &CartesianTreeSimple32{}
	n := int32(len(nums))
	Range := make([][2]int32, n)
	lch := make([]int32, n)
	rch := make([]int32, n)
	par := make([]int32, n)

	for i := int32(0); i < n; i++ {
		Range[i] = [2]int32{-1, -1}
		lch[i] = -1
		rch[i] = -1
		par[i] = -1
	}

	res.n = n
	res.nums = nums
	res.Range = Range
	res.leftChild = lch
	res.rigthChild = rch
	res.parent = par

	if n == 1 {
		res.Range[0] = [2]int32{0, 1}
		return res
	}

	less := func(i, j int32) bool {
		return (nums[i] < nums[j]) || (nums[i] == nums[j] && i < j)
	}

	stack := make([]int32, 0)
	for i := int32(0); i < n; i++ {
		for len(stack) > 0 && less(i, stack[len(stack)-1]) {
			res.leftChild[i] = stack[len(stack)-1]
			stack = stack[:len(stack)-1]
		}
		res.Range[i][0] = 0
		if len(stack) > 0 {
			res.Range[i][0] = stack[len(stack)-1] + 1
		}
		stack = append(stack, i)
	}

	stack = stack[:0]
	for i := n - 1; i >= 0; i-- {
		for len(stack) > 0 && less(i, stack[len(stack)-1]) {
			res.rigthChild[i] = stack[len(stack)-1]
			stack = stack[:len(stack)-1]
		}
		res.Range[i][1] = n
		if len(stack) > 0 {
			res.Range[i][1] = stack[len(stack)-1]
		}
		stack = append(stack, i)
	}

	for i := int32(0); i < n; i++ {
		if res.leftChild[i] != -1 {
			res.parent[res.leftChild[i]] = i
		}
		if res.rigthChild[i] != -1 {
			res.parent[res.rigthChild[i]] = i
		}
	}
	for i := int32(0); i < n; i++ {
		if res.parent[i] == -1 {
			res.Root = i
		}
	}

	return res
}

// PointSetRangeMinIndex
const INF32 int32 = 1e9 + 10

type E = struct{ value, index int32 }

func (*SegmentTree) e() E {
	return E{value: INF32, index: -1}
}
func (*SegmentTree) op(a, b E) E {
	if a.value < b.value {
		return a
	}
	if a.value > b.value {
		return b
	}
	if a.index < b.index {
		return a
	}
	return b
}

type SegmentTree struct {
	n, size int
	seg     []E
}

func NewSegmentTree(n int, f func(int) E) *SegmentTree {
	res := &SegmentTree{}
	size := 1
	for size < n {
		size <<= 1
	}
	seg := make([]E, size<<1)
	for i := range seg {
		seg[i] = res.e()
	}
	for i := 0; i < n; i++ {
		seg[i+size] = f(i)
	}
	for i := size - 1; i > 0; i-- {
		seg[i] = res.op(seg[i<<1], seg[i<<1|1])
	}
	res.n = n
	res.size = size
	res.seg = seg
	return res
}
func NewSegmentTreeFrom(leaves []E) *SegmentTree {
	res := &SegmentTree{}
	n := len(leaves)
	size := 1
	for size < n {
		size <<= 1
	}
	seg := make([]E, size<<1)
	for i := range seg {
		seg[i] = res.e()
	}
	for i := 0; i < n; i++ {
		seg[i+size] = leaves[i]
	}
	for i := size - 1; i > 0; i-- {
		seg[i] = res.op(seg[i<<1], seg[i<<1|1])
	}
	res.n = n
	res.size = size
	res.seg = seg
	return res
}
func (st *SegmentTree) Get(index int) E {
	if index < 0 || index >= st.n {
		return st.e()
	}
	return st.seg[index+st.size]
}
func (st *SegmentTree) Set(index int, value E) {
	if index < 0 || index >= st.n {
		return
	}
	index += st.size
	st.seg[index] = value
	for index >>= 1; index > 0; index >>= 1 {
		st.seg[index] = st.op(st.seg[index<<1], st.seg[index<<1|1])
	}
}
func (st *SegmentTree) Update(index int, value E) {
	if index < 0 || index >= st.n {
		return
	}
	index += st.size
	st.seg[index] = st.op(st.seg[index], value)
	for index >>= 1; index > 0; index >>= 1 {
		st.seg[index] = st.op(st.seg[index<<1], st.seg[index<<1|1])
	}
}

// [start, end)
func (st *SegmentTree) Query(start, end int) E {
	if start < 0 {
		start = 0
	}
	if end > st.n {
		end = st.n
	}
	if start >= end {
		return st.e()
	}
	leftRes, rightRes := st.e(), st.e()
	start += st.size
	end += st.size
	for start < end {
		if start&1 == 1 {
			leftRes = st.op(leftRes, st.seg[start])
			start++
		}
		if end&1 == 1 {
			end--
			rightRes = st.op(st.seg[end], rightRes)
		}
		start >>= 1
		end >>= 1
	}
	return st.op(leftRes, rightRes)
}
func (st *SegmentTree) QueryAll() E { return st.seg[1] }
func (st *SegmentTree) GetAll() []E {
	res := make([]E, st.n)
	copy(res, st.seg[st.size:st.size+st.n])
	return res
}

// 二分查询最大的 right 使得切片 [left:right] 内的值满足 predicate
func (st *SegmentTree) MaxRight(left int, predicate func(E) bool) int {
	if left == st.n {
		return st.n
	}
	left += st.size
	res := st.e()
	for {
		for left&1 == 0 {
			left >>= 1
		}
		if !predicate(st.op(res, st.seg[left])) {
			for left < st.size {
				left <<= 1
				if tmp := st.op(res, st.seg[left]); predicate(tmp) {
					res = tmp
					left++
				}
			}
			return left - st.size
		}
		res = st.op(res, st.seg[left])
		left++
		if (left & -left) == left {
			break
		}
	}
	return st.n
}

// 二分查询最小的 left 使得切片 [left:right] 内的值满足 predicate
func (st *SegmentTree) MinLeft(right int, predicate func(E) bool) int {
	if right == 0 {
		return 0
	}
	right += st.size
	res := st.e()
	for {
		right--
		for right > 1 && right&1 == 1 {
			right >>= 1
		}
		if !predicate(st.op(st.seg[right], res)) {
			for right < st.size {
				right = right<<1 | 1
				if tmp := st.op(st.seg[right], res); predicate(tmp) {
					res = tmp
					right--
				}
			}
			return right + 1 - st.size
		}
		res = st.op(st.seg[right], res)
		if right&-right == right {
			break
		}
	}
	return 0
}

func reverseString(s string) string {
	n := len(s)
	runes := make([]rune, n)
	for _, r := range s {
		n--
		runes[n] = r
	}
	return string(runes)
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

func max32(a, b int32) int32 {
	if a > b {
		return a
	}
	return b
}

func min32(a, b int32) int32 {
	if a < b {
		return a
	}
	return b
}
0