結果
| 問題 |
No.5020 Averaging
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-02-26 18:25:16 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 901 ms / 1,000 ms |
| コード長 | 10,659 bytes |
| コンパイル時間 | 2,422 ms |
| コンパイル使用メモリ | 205,484 KB |
| 実行使用メモリ | 118,556 KB |
| スコア | 39,620,376 |
| 最終ジャッジ日時 | 2024-02-26 18:26:05 |
| 合計ジャッジ時間 | 48,930 ms |
|
ジャッジサーバーID (参考情報) |
judge14 / judge11 |
| 純コード判定しない問題か言語 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 50 |
ソースコード
#![allow(non_snake_case)]
#![allow(unused_imports)]
#![allow(unused_macros)]
#![allow(clippy::needless_range_loop)]
#![allow(clippy::comparison_chain)]
#![allow(clippy::nonminimal_bool)]
#![allow(clippy::neg_multiply)]
#![allow(dead_code)]
use std::cmp::Reverse;
use std::collections::{BTreeMap, BTreeSet, BinaryHeap, HashMap, HashSet, VecDeque};
use crate::rnd::gen_range;
const TARGET: isize = 5e17 as isize;
const TURN_MAX: usize = 50;
#[derive(Default)]
struct Solver {}
impl Solver {
fn solve(&mut self) {
let start = std::time::Instant::now();
#[cfg(feature = "local")]
{
let seed = 1;
eprintln!("Seed: {seed}");
rnd::init(seed);
}
let time_keeper = TimeKeeper::new(0.8);
input! {
N: usize,
AB: [(isize, isize); N]
}
let mut order = (1..N).collect::<Vec<usize>>();
let mut used = HashSet::new();
used.insert(order.clone());
let mut best_order = order.clone();
let (mut best_score, _) = play(&AB, &order);
let mut iterations = 0;
'outer: while !time_keeper.isTimeOver() {
iterations += 1;
let mut i;
let mut j;
loop {
if time_keeper.isTimeOver() {
break 'outer;
}
i = rnd::gen_range(0, N - 1);
j = rnd::gen_range(0, N - 1);
if i == j {
continue;
}
order.swap(i, j);
if used.contains(&order) {
order.swap(i, j);
} else {
used.insert(order.clone());
break;
}
}
let (score, _) = play(&AB, &order);
if score >= best_score {
best_score = score;
best_order = order.clone();
} else {
order.swap(i, j);
}
}
let (score, idx) = play(&AB, &best_order);
let mut operations = vec![];
for i in 0..=idx {
operations.push((0, best_order[i]));
}
output(&operations);
eprintln!("score: {}", score);
eprintln!("Iterations: {}", iterations);
#[allow(unused_mut, unused_assignments)]
let mut elapsed_time = start.elapsed().as_micros() as f64 * 1e-6;
#[cfg(feature = "local")]
{
eprintln!("Local Mode");
elapsed_time *= 0.55;
}
eprintln!("Elapsed: {}", (elapsed_time * 1000.0) as usize);
}
}
fn play(AB: &[(isize, isize)], order: &[usize]) -> (usize, usize) {
let N = AB.len();
let mut now = AB[0];
let mut best_score = calc_score(now);
let mut best_idx = 0;
for i in 0..N - 1 {
let ret = op(now, AB[order[i]]);
now = ret;
let score = calc_score(now);
if score > best_score {
best_score = score;
best_idx = i;
}
}
(best_score, best_idx)
}
fn op(u: (isize, isize), v: (isize, isize)) -> (isize, isize) {
((u.0 + v.0) / 2, (u.1 + v.1) / 2)
}
fn calc_score(ab: (isize, isize)) -> usize {
let v1 = (ab.0 - TARGET).abs();
let v2 = (ab.1 - TARGET).abs();
let mx = max!(v1, v2) as f64;
let score = 2e6 - 1e5 * (mx + 1.0).log10();
score.floor() as usize
}
fn output(operations: &[(usize, usize)]) {
println!("{}", operations.len());
for &(a, b) in operations.iter() {
println!("{} {}", a + 1, b + 1);
}
}
#[macro_export]
macro_rules! max {
($x: expr) => ($x);
($x: expr, $( $y: expr ),+) => {
std::cmp::max($x, max!($( $y ),+))
}
}
#[macro_export]
macro_rules! min {
($x: expr) => ($x);
($x: expr, $( $y: expr ),+) => {
std::cmp::min($x, min!($( $y ),+))
}
}
fn main() {
std::thread::Builder::new()
.stack_size(128 * 1024 * 1024)
.spawn(|| Solver::default().solve())
.unwrap()
.join()
.unwrap();
}
// fn read<T: std::str::FromStr>() -> T {
// let mut s = String::new();
// std::io::stdin().read_line(&mut s).ok();
// s.trim().parse().ok().unwrap()
// }
// fn read_vec<T: std::str::FromStr>() -> Vec<T> {
// read::<String>()
// .split_whitespace()
// .map(|e| e.parse().ok().unwrap())
// .collect()
// }
#[macro_export]
macro_rules! input {
() => {};
(mut $var:ident: $t:tt, $($rest:tt)*) => {
let mut $var = __input_inner!($t);
input!($($rest)*)
};
($var:ident: $t:tt, $($rest:tt)*) => {
let $var = __input_inner!($t);
input!($($rest)*)
};
(mut $var:ident: $t:tt) => {
let mut $var = __input_inner!($t);
};
($var:ident: $t:tt) => {
let $var = __input_inner!($t);
};
}
#[macro_export]
macro_rules! __input_inner {
(($($t:tt),*)) => {
($(__input_inner!($t)),*)
};
([$t:tt; $n:expr]) => {
(0..$n).map(|_| __input_inner!($t)).collect::<Vec<_>>()
};
([$t:tt]) => {{
let n = __input_inner!(usize);
(0..n).map(|_| __input_inner!($t)).collect::<Vec<_>>()
}};
(chars) => {
__input_inner!(String).chars().collect::<Vec<_>>()
};
(bytes) => {
__input_inner!(String).into_bytes()
};
(usize1) => {
__input_inner!(usize) - 1
};
($t:ty) => {
$crate::read::<$t>()
};
}
#[macro_export]
macro_rules! println {
() => {
$crate::write(|w| {
use std::io::Write;
std::writeln!(w).unwrap()
})
};
($($arg:tt)*) => {
$crate::write(|w| {
use std::io::Write;
std::writeln!(w, $($arg)*).unwrap()
})
};
}
#[macro_export]
macro_rules! print {
($($arg:tt)*) => {
$crate::write(|w| {
use std::io::Write;
std::write!(w, $($arg)*).unwrap()
})
};
}
#[macro_export]
macro_rules! flush {
() => {
$crate::write(|w| {
use std::io::Write;
w.flush().unwrap()
})
};
}
pub fn read<T>() -> T
where
T: std::str::FromStr,
T::Err: std::fmt::Debug,
{
use std::cell::RefCell;
use std::io::*;
thread_local! {
pub static STDIN: RefCell<StdinLock<'static>> = RefCell::new(stdin().lock());
}
STDIN.with(|r| {
let mut r = r.borrow_mut();
let mut s = vec![];
loop {
let buf = r.fill_buf().unwrap();
if buf.is_empty() {
break;
}
if let Some(i) = buf.iter().position(u8::is_ascii_whitespace) {
s.extend_from_slice(&buf[..i]);
r.consume(i + 1);
if !s.is_empty() {
break;
}
} else {
s.extend_from_slice(buf);
let n = buf.len();
r.consume(n);
}
}
std::str::from_utf8(&s).unwrap().parse().unwrap()
})
}
pub fn write<F>(f: F)
where
F: FnOnce(&mut std::io::BufWriter<std::io::StdoutLock>),
{
use std::cell::RefCell;
use std::io::*;
thread_local! {
pub static STDOUT: RefCell<BufWriter<StdoutLock<'static>>> =
RefCell::new(BufWriter::new(stdout().lock()));
}
STDOUT.with(|w| f(&mut w.borrow_mut()))
}
// trait Bound<T> {
// fn lower_bound(&self, x: &T) -> usize;
// fn upper_bound(&self, x: &T) -> usize;
// }
// impl<T: PartialOrd> Bound<T> for [T] {
// fn lower_bound(&self, x: &T) -> usize {
// let (mut low, mut high) = (0, self.len());
// while low + 1 < high {
// let mid = (low + high) / 2;
// if self[mid] < *x {
// low = mid;
// } else {
// high = mid;
// }
// }
// if self[low] < *x {
// low + 1
// } else {
// low
// }
// }
// fn upper_bound(&self, x: &T) -> usize {
// let (mut low, mut high) = (0, self.len());
// while low + 1 < high {
// let mid = (low + high) / 2;
// if self[mid] <= *x {
// low = mid;
// } else {
// high = mid;
// }
// }
// if self[low] <= *x {
// low + 1
// } else {
// low
// }
// }
// }
mod rnd {
static mut S: usize = 0;
static MAX: usize = 1e9 as usize;
#[inline]
pub fn init(seed: usize) {
unsafe {
if seed == 0 {
let t = std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap()
.as_secs() as usize;
S = t
} else {
S = seed;
}
}
}
#[inline]
pub fn gen() -> usize {
unsafe {
if S == 0 {
init(0);
}
S ^= S << 7;
S ^= S >> 9;
S
}
}
#[inline]
pub fn gen_range(a: usize, b: usize) -> usize {
gen() % (b - a) + a
}
#[inline]
pub fn gen_bool() -> bool {
gen() & 1 == 1
}
#[inline]
pub fn gen_range_isize(a: usize) -> isize {
let mut x = (gen() % a) as isize;
if gen_bool() {
x *= -1;
}
x
}
#[inline]
pub fn gen_range_neg_wrapping(a: usize) -> usize {
let mut x = gen() % a;
if gen_bool() {
x = x.wrapping_neg();
}
x
}
#[inline]
pub fn gen_float() -> f64 {
((gen() % MAX) as f64) / MAX as f64
}
}
#[derive(Debug, Clone)]
struct TimeKeeper {
start_time: std::time::Instant,
time_threshold: f64,
}
impl TimeKeeper {
fn new(time_threshold: f64) -> Self {
TimeKeeper {
start_time: std::time::Instant::now(),
time_threshold,
}
}
#[inline]
fn isTimeOver(&self) -> bool {
let elapsed_time = self.start_time.elapsed().as_nanos() as f64 * 1e-9;
#[cfg(feature = "local")]
{
elapsed_time * 0.55 >= self.time_threshold
}
#[cfg(not(feature = "local"))]
{
elapsed_time >= self.time_threshold
}
}
#[inline]
fn get_time(&self) -> f64 {
let elapsed_time = self.start_time.elapsed().as_nanos() as f64 * 1e-9;
#[cfg(feature = "local")]
{
elapsed_time * 0.55
}
#[cfg(not(feature = "local"))]
{
elapsed_time
}
}
}