結果
問題 | No.376 立方体のN等分 (2) |
ユーザー | りあん |
提出日時 | 2016-06-04 22:43:14 |
言語 | C#(csc) (csc 3.9.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 5,785 bytes |
コンパイル時間 | 2,149 ms |
コンパイル使用メモリ | 109,184 KB |
実行使用メモリ | 21,376 KB |
最終ジャッジ日時 | 2024-10-08 08:48:33 |
合計ジャッジ時間 | 15,197 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 20 ms
17,152 KB |
testcase_01 | AC | 27 ms
17,664 KB |
testcase_02 | AC | 799 ms
17,408 KB |
testcase_03 | AC | 1,622 ms
17,536 KB |
testcase_04 | AC | 1,090 ms
17,664 KB |
testcase_05 | AC | 21 ms
17,408 KB |
testcase_06 | AC | 20 ms
17,536 KB |
testcase_07 | AC | 20 ms
17,280 KB |
testcase_08 | AC | 38 ms
17,280 KB |
testcase_09 | AC | 107 ms
17,280 KB |
testcase_10 | AC | 1,523 ms
17,408 KB |
testcase_11 | AC | 297 ms
17,408 KB |
testcase_12 | AC | 660 ms
17,536 KB |
testcase_13 | AC | 298 ms
17,408 KB |
testcase_14 | AC | 378 ms
17,408 KB |
testcase_15 | AC | 262 ms
17,536 KB |
testcase_16 | TLE | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System; using System.Collections.Generic; using System.Linq; using System.IO; using System.Text; class Program { const int M = 1000000007; const double eps = 1e-9; static int[] dd = { 0, 1, 0, -1, 0 }; static void Main() { var sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; var sc = new Scan(); var n = sc.Long; sw.WriteLine("{0} {1}", dfs(n, 3), n - 1); sw.Flush(); } static long dfs(long n, int dim) { long min = n - 1; if (dim == 1) return min; if (dim == 2) { int p = (int)Math.Sqrt(n) + 1; for (int i = p; i >= 1; i--) { if (n % p == 0) return n / p + p - 2; } } for (long i = 1; i * i <= n; i++) { if (n % i == 0) { min = Math.Min(min, dfs(n / i, dim - 1) + i - 1); } } return min; } static void swap<T>(ref T a, ref T b) { var t = a; a = b; b = t; } static T[] copy<T>(T[] a) { var ret = new T[a.Length]; for (int i = 0; i < a.Length; i++) ret[i] = a[i]; return ret; } static T[][] copy2<T>(T[][] a) { var ret = new T[a.Length][]; for (int i = 0; i < a.Length; i++) { ret[i] = new T[a[0].Length]; for (int j = 0; j < a[0].Length; j++) ret[i][j] = a[i][j]; } return ret; } } class Scan { public int Int { get { return int.Parse(Str); } } public long Long { get { return long.Parse(Str); } } public string Str { get { return Console.ReadLine().Trim(); } } public int[] IntArr { get { return StrArr.Select(int.Parse).ToArray(); } } public int[] IntArrWithSep(char sep) { return Str.Split(sep).Select(int.Parse).ToArray(); } public long[] LongArr { get { return StrArr.Select(long.Parse).ToArray(); } } public double[] DoubleArr { get { return StrArr.Select(double.Parse).ToArray(); } } public string[] StrArr { get { return Str.Split(); } } public void Multi(out int a, out int b) { var arr = IntArr; a = arr[0]; b = arr[1]; } public void Multi(out int a, out int b, out int c) { var arr = IntArr; a = arr[0]; b = arr[1]; c = arr[2]; } public void Multi(out int a, out string b) { var arr = StrArr; a = int.Parse(arr[0]); b = arr[1]; } public void Multi(out string a, out int b) { var arr = StrArr; a = arr[0]; b = int.Parse(arr[1]); } public void Multi(out int a, out char b) { var arr = StrArr; a = int.Parse(arr[0]); b = arr[1][0]; } public void Multi(out char a, out int b) { var arr = StrArr; a = arr[0][0]; b = int.Parse(arr[1]); } public void Multi(out long a, out long b) { var arr = LongArr; a = arr[0]; b = arr[1]; } public void Multi(out long a, out int b) { var arr = LongArr; a = arr[0]; b = (int)arr[1]; } public void Multi(out int a, out long b) { var arr = LongArr; a = (int)arr[0]; b = arr[1]; } public void Multi(out string a, out string b) { var arr = StrArr; a = arr[0]; b = arr[1]; } } class mymath { public bool isprime(long a) { if (a < 2) return false; for (long i = 2; i * i <= a; i++) if (a % i == 0) return false; return true; } public long[][] powmat(long[][] A, long n, int M) { var E = new long[A.Length][]; for (int i = 0; i < A.Length; i++) { E[i] = new long[A.Length]; E[i][i] = 1; } if (n == 0) return E; var t = powmat(A, n / 2, M); if ((n & 1) == 0) return mulmat(t, t, M); return mulmat(mulmat(t, t, M), A, M); } public long[] mulmat(long[][] A, long[] x, int M) { var ans = new long[A.Length]; for (int i = 0; i < A.Length; i++) for (int j = 0; j < x.Length; j++) ans[i] = (ans[i] + x[j] * A[i][j]) % M; return ans; } public long[][] mulmat(long[][] A, long[][] B, int M) { var ans = new long[A.Length][]; for (int i = 0; i < A.Length; i++) { ans[i] = new long[B[0].Length]; for (int j = 0; j < B[0].Length; j++) for (int k = 0; k < B.Length; k++) ans[i][j] = (ans[i][j] + A[i][k] * B[k][j]) % M; } return ans; } public long powmod(long a, long b, long M) { if (a == 0) return 0; if (b == 0) return 1; var t = powmod(a, b / 2, M); if ((b & 1) == 0) return t * t % M; return t * t % M * a % M; } public long gcd(long a, long b) { while (b > 0) { var t = a % b; a = b; b = t; } return a; } public long lcm(long a, long b) { return a * (b / gcd(a, b)); } public long Comb(int n, int r) { const int M = 1000000007; if (n < 0 || r < 0 || r > n) return 0; if (n - r < r) r = n - r; if (r == 0) return 1; if (r == 1) return n; var numerator = new int[r]; var denominator = new int[r]; for (int k = 0; k < r; k++) { numerator[k] = n - r + k + 1; denominator[k] = k + 1; } for (int p = 2; p <= r; p++) { int pivot = denominator[p - 1]; if (pivot > 1) { int offset = (n - r) % p; for (int k = p - 1; k < r; k += p) { numerator[k - offset] /= pivot; denominator[k] /= pivot; } } } long result = 1; for (int k = 0; k < r; k++) if (numerator[k] > 1) result = result * numerator[k] % M; return result; } }