結果
| 問題 |
No.901 K-ary εxtrεεmε
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-02-27 00:17:01 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 15,216 bytes |
| コンパイル時間 | 714 ms |
| コンパイル使用メモリ | 82,856 KB |
| 実行使用メモリ | 236,148 KB |
| 最終ジャッジ日時 | 2024-09-29 11:50:41 |
| 合計ジャッジ時間 | 26,409 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 3 WA * 26 |
ソースコード
from random import getrandbits, randrange
from string import ascii_lowercase, ascii_uppercase
import sys
from math import ceil, floor, sqrt, pi, factorial, gcd, log, log10, log2, inf, cos, sin
from copy import deepcopy, copy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import (
accumulate,
chain,
product,
combinations,
combinations_with_replacement,
permutations,
)
from bisect import bisect, bisect_left, bisect_right
from functools import lru_cache, reduce
from decimal import Decimal, getcontext
from typing import List, Tuple, Optional
class Inf:
def __init__(self, value):
self.value = value
def __lt__(self, other):
return False
def __le__(self, other):
if isinstance(other, Inf):
return True
return False
def __gt__(self, other):
if isinstance(other, Inf):
return False
return True
def __ge__(self, other):
return True
def __eq__(self, other):
return isinstance(other, Inf) and self.value == other.value
def __repr__(self):
return f"{self.value}"
def __add__(self, other):
return Inf(self.value) if isinstance(other, Inf) else self
def __sub__(self, other):
return Inf(self.value) if isinstance(other, Inf) else self
def __mul__(self, other):
return Inf(self.value) if isinstance(other, Inf) else self
def ceil_div(a, b):
return (a + b - 1) // b
def isqrt(num):
res = int(sqrt(num))
while res * res > num:
res -= 1
while (res + 1) * (res + 1) <= num:
res += 1
return res
def int1(s):
return int(s) - 1
from types import GeneratorType
def bootstrap(f, stack=[]):
def wrapped(*args, **kwargs):
if stack:
return f(*args, **kwargs)
else:
to = f(*args, **kwargs)
while True:
if type(to) is GeneratorType:
stack.append(to)
to = next(to)
else:
stack.pop()
if not stack:
break
to = stack[-1].send(to)
return to
return wrapped
import sys
import os
from io import BytesIO, IOBase
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
print = lambda *args, end="\n", sep=" ": sys.stdout.write(
sep.join(map(str, args)) + end
)
def II():
return int(input())
def MII(base=0):
return map(lambda s: int(s) - base, input().split())
def LII(base=0):
return list(MII(base))
def NA():
n = II()
a = LII()
return n, a
def read_graph(n, m, base=0, directed=False, return_edges=False):
g = [[] for _ in range(n)]
edges = []
for _ in range(m):
a, b = MII(base)
if return_edges:
edges.append((a, b))
g[a].append(b)
if not directed:
g[b].append(a)
if return_edges:
return g, edges
return g
def read_graph_with_weight(n, m, base=0, directed=False, return_edges=False):
g = [[] for _ in range(n)]
edges = []
for _ in range(m):
a, b, w = MII()
a, b = a - base, b - base
if return_edges:
edges.append((a, b, w))
g[a].append((b, w))
if not directed:
g[b].append((a, w))
if return_edges:
return g, edges
return g
def read_edges_from_ps():
ps = LII(1)
edges = []
for i, p in enumerate(ps, 1):
edges.append((p, i))
return edges
def yes(res):
print("Yes" if res else "No")
def YES(res):
print("YES" if res else "NO")
def cmin(dp, i, x):
if x < dp[i]:
dp[i] = x
def cmax(dp, i, x):
if x > dp[i]:
dp[i] = x
def alp_a_to_i(s):
return ord(s) - ord("a")
def alp_A_to_i(s):
return ord(s) - ord("A")
def alp_i_to_a(i):
return chr(ord("a") + i)
def alp_i_to_A(i):
return chr(ord("A") + i)
d4 = [(1, 0), (0, 1), (-1, 0), (0, -1)]
d8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]
def ranges(n, m):
return ((i, j) for i in range(n) for j in range(m))
def rangess(a, b, c):
return ((i, j, k) for i in range(a) for j in range(b) for k in range(c))
def valid(i, j, n, m):
return 0 <= i < n and 0 <= j < m
def ninj(i, j, n, m):
return [(i + di, j + dj) for di, dj in d4 if valid(i + di, j + dj, n, m)]
def gen(x, *args):
if len(args) == 1:
return [x] * args[0]
if len(args) == 2:
return [[x] * args[1] for _ in [0] * args[0]]
if len(args) == 3:
return [[[x] * args[2] for _ in [0] * args[1]] for _ in [0] * args[0]]
if len(args) == 4:
return [
[[[x] * args[3] for _ in [0] * args[2]] for _ in [0] * args[1]]
for _ in [0] * args[0]
]
list2d = lambda a, b, v: [[v] * b for _ in range(a)]
list3d = lambda a, b, c, v: [[[v] * c for _ in range(b)] for _ in range(a)]
class Debug:
def __init__(self, debug=False):
self.debug = debug
cur_path = os.path.dirname(os.path.abspath(__file__))
self.local = os.path.exists(cur_path + "/.cph")
def get_ic(self):
if self.debug and self.local:
from icecream import ic
return ic
else:
return lambda *args, **kwargs: ...
def pairwise(a):
n = len(a)
for i in range(n - 1):
yield a[i], a[i + 1]
def factorial(n):
return reduce(lambda x, y: x * y, range(1, n + 1))
ic = Debug(1).get_ic()
inf = Inf(-1)
class PrefixSum:
def __init__(self, a):
self.n = len(a)
self.sum = [0] * (self.n + 1)
for i in range(1, self.n + 1):
self.sum[i] = self.sum[i - 1] + a[i - 1]
def __getitem__(self, key):
if isinstance(key, slice):
start = key.start if key.start is not None else 0
stop = key.stop if key.stop is not None else self.n - 1
return self.get_sum(start, stop)
return self.sum[key + 1]
def __iter__(self):
return iter(self.sum)
def __len__(self):
return self.n
def get_sum(self, l, r):
if l > r:
return 0
return self.sum[r + 1] - self.sum[l]
def __repr__(self):
return str(self.sum)
class SparseTable:
def __init__(self, data: list, func=min):
self.func = func
self.st = st = [list(data)]
i, N = 1, len(st[0])
while 2 * i <= N + 1:
qz = st[-1]
st.append([func(qz[j], qz[j + i]) for j in range(N - 2 * i + 1)])
i <<= 1
def query(self, begin: int, end: int):
lg = (end - begin + 1).bit_length() - 1
return self.func(self.st[lg][begin], self.st[lg][end - (1 << lg) + 1])
class EulerTour:
def __init__(self, vertex_num: int):
self.N = vertex_num
self.edge: list[tuple[int, int]] = []
self.G: list[list[tuple[int, int]]] = [[] for _ in range(vertex_num)]
self.lca = None
def add_edge(self, u: int, v: int):
eid = len(self.edge)
self.edge.append((u, v))
self.G[u].append((v, eid))
self.G[v].append((u, eid))
def build(self, root=0):
N, G = self.N, self.G
self.root = root
tour = []
depth = []
node_in = [-1] * N
node_out = [-1] * N
node_depth = [-1] * N
edge_in = [-1] * (N - 1)
edge_out = [-1] * (N - 1)
parent = [-1] * N
stk = [(root, 0, -1)]
t = -1
while stk:
t += 1
v, d, ei = stk.pop()
if node_in[v] < 0:
node_in[v] = t
node_depth[v] = d
if ei >= 0:
edge_in[ei] = t
tour.append(v)
depth.append(d)
is_leaf = True
for nv, ne in G[v]:
if parent[nv] >= 0:
continue
parent[nv] = v
stk.append((v, d, ne))
stk.append((nv, d + 1, ne))
is_leaf = False
if is_leaf:
node_out[v] = t + 1
if ei >= 0:
edge_out[ei] = t + 1
else:
node_out[v] = t + 1
edge_out[ei] = t + 1
tour.append(v)
depth.append(d)
tour.append(-1)
depth.append(-1)
self.tour = tour
self.depth = depth
self.node_in = node_in
self.node_out = node_out
self.node_depth = node_depth
self.edge_in = edge_in
self.edge_out = edge_out
self.parent = parent
class __LCA:
def __init__(self, tour: list[int], tour_depth: list[int], node_in: list[int]):
data = [(d, v) for d, v in zip(tour_depth, tour)]
self._st = SparseTable(data, func=lambda x, y: x if x <= y else y)
self._node_in = node_in
def get(self, u, v):
node_in = self._node_in
l, r = node_in[u], node_in[v]
if l > r:
l, r = r, l
return self._st.query(l, r)[1]
def use_LCA(self):
if self.lca is None:
self.lca = self.__LCA(self.tour, self.depth, self.node_in)
return self.lca
class __AuxiliaryTree(dict):
def __init__(
self,
vertex_group_id: list[int],
special_nodes: list[int],
node_in: list[int],
node_out: list[int],
lca,
parent,
):
V: dict[int, list[int]] = dict()
if not ((vertex_group_id is None) ^ (special_nodes is None)):
raise ValueError
if vertex_group_id is not None:
for v, g in enumerate(vertex_group_id):
if g not in V:
V[g] = []
V[g].append(v)
if special_nodes is not None:
V[1] = special_nodes[::]
for k, vv in V.items():
vv.sort(key=lambda v: node_in[v])
for i in range(1, len(vv)):
vv.append(lca.get(vv[i - 1], vv[i]))
vv = sorted(set(vv), key=lambda v: node_in[v])
G: dict[int, list[int]] = dict()
P: dict[int, int] = dict()
stk: list[int] = []
for v in vv:
while stk and node_out[stk[-1]] <= node_out[v]:
stk.pop()
if stk:
p = stk[-1]
if p not in G:
G[p] = []
G[p].append(v)
P[v] = p
stk.append(v)
self[k] = (G, P, vv)
def use_AuxiliaryTree(
self, vertex_group_id: list[int] = None, special_nodes: list[int] = None
) -> dict[int, tuple[dict[int, list[int]], dict[int, int], list[int]]]:
return self.__AuxiliaryTree(
vertex_group_id,
special_nodes,
self.node_in,
self.node_out,
self.use_LCA(),
self.parent,
)
def MyEulerTour(n, G, i0=0):
P = [-1] * n
stack = [~i0, i0]
ct = -1
depth = [-1] * n
nodein = [-1] * n
nodeout = [-1] * n
ET = []
de = 0
while stack:
i = stack.pop()
if i < 0:
ET.append(P[~i])
nodeout[~i] = ct
de -= 1
continue
if i >= 0:
ct += 1
ET.append(i)
if nodein[i] == -1:
nodein[i] = ct
depth[i] = de
de += 1
for v, _ in G[i][::-1]:
if v == P[i]:
continue
P[v] = i
stack.append(~v)
stack.append(v)
return ET, nodein, nodeout, depth
class Tree:
def __init__(self, g=None, edges=None, root=0, vals=[]):
if edges is not None:
self.n = n = len(edges) + 1
self.g = g = [[] for _ in range(n)]
for u, v in edges:
self.g[u].append(v)
self.g[v].append(u)
else:
self.n = n = len(g)
self.g = g
self.root = root
self.parent = parent = [-1] * n
stk = [root]
self.order = order = [root]
self.depth = depth = [0] * n
while stk:
u = stk.pop()
for v in g[u]:
if v != root and parent[v] == -1:
depth[v] = depth[u] + 1
parent[v] = u
stk.append(v)
order.append(v)
n = II()
T = EulerTour(n)
g, edges = read_graph_with_weight(n, n - 1, 0, return_edges=True)
for u, v, w in edges:
T.add_edge(u, v)
T.build()
lca = T.use_LCA()
t = Tree(edges=[(u, v) for u, v, _ in edges])
depth, parent = t.depth, t.parent
a = [0] * n
for u, v, w in edges:
child = u if depth[u] > depth[v] else v
a[child] = w
b = a[::]
vst = [0] * n
for u in T.tour:
if u < 0 or vst[u] == 1:
continue
vst[u] = 1
p = parent[u]
if p != -1:
b[u] += b[p]
def query(u, v):
return b[u] + b[v] - 2 * lca.get(u, v)
for _ in range(II()):
a = LII()[1:]
res = 0
for ai, (children, ps, tour) in T.use_AuxiliaryTree(special_nodes=a).items():
for u in tour[::-1]:
for v in children.get(u, []):
res += query(u, v)
print(res)