結果
問題 | No.14 最小公倍数ソート |
ユーザー |
|
提出日時 | 2024-02-29 02:02:38 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 470 ms / 5,000 ms |
コード長 | 7,126 bytes |
コンパイル時間 | 261 ms |
コンパイル使用メモリ | 82,432 KB |
実行使用メモリ | 92,232 KB |
最終ジャッジ日時 | 2024-09-29 12:30:16 |
合計ジャッジ時間 | 8,489 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 20 |
ソースコード
import sysimport mathimport bisectfrom heapq import heapify, heappop, heappushfrom collections import deque, defaultdict, Counterfrom functools import lru_cachefrom itertools import accumulate, combinations, permutations, productsys.setrecursionlimit(1000000)MOD = 10 ** 9 + 7MOD99 = 998244353input = lambda: sys.stdin.readline().strip()NI = lambda: int(input())NMI = lambda: map(int, input().split())NLI = lambda: list(NMI())SI = lambda: input()SMI = lambda: input().split()SLI = lambda: list(SMI())EI = lambda m: [NLI() for _ in range(m)]# 高速エラストテネス sieve[n]はnの最小の素因数def make_prime_table(n):sieve = list(range(n + 1))sieve[0] = -1sieve[1] = -1for i in range(4, n + 1, 2):sieve[i] = 2for i in range(3, int(n ** 0.5) + 1, 2):if sieve[i] != i:continuefor j in range(i * i, n + 1, i * 2):if sieve[j] == j:sieve[j] = ireturn sieveprime_table = make_prime_table(1000)# 素数列挙primes = [p for i, p in enumerate(prime_table) if i == p]# 素因数分解 上のprime_tableと組み合わせて使うdef prime_factorize(n):result = []while n != 1:p = prime_table[n]e = 0while n % p == 0:n //= pe += 1result.append((p, e))return result# Nの素因数分解を辞書で返す(単体)def prime_fact(n):root = int(n**0.5) + 1prime_dict = {}for i in range(2, root):cnt = 0while n % i == 0:cnt += 1n = n // iif cnt:prime_dict[i] = cntif n != 1:prime_dict[n] = 1return prime_dict# 約数列挙(単体)def divisors(x):res = set()for i in range(1, int(x**0.5) + 2):if x % i == 0:res.add(i)res.add(x//i)return res# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.pyimport mathfrom bisect import bisect_left, bisect_right, insortfrom typing import Generic, Iterable, Iterator, TypeVar, Union, ListT = TypeVar('T')class SortedMultiset(Generic[T]):BUCKET_RATIO = 50REBUILD_RATIO = 170def _build(self, a=None) -> None:"Evenly divide `a` into buckets."if a is None: a = list(self)size = self.size = len(a)bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))self.a = [a[size * i // bucket_size: size * (i + 1) // bucket_size] for i in range(bucket_size)]def __init__(self, a: Iterable[T] = []) -> None:"Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)"a = list(a)if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)):a = sorted(a)self._build(a)def __iter__(self) -> Iterator[T]:for i in self.a:for j in i: yield jdef __reversed__(self) -> Iterator[T]:for i in reversed(self.a):for j in reversed(i): yield jdef __len__(self) -> int:return self.sizedef __repr__(self) -> str:return "SortedMultiset" + str(self.a)def __str__(self) -> str:s = str(list(self))return "{" + s[1: len(s) - 1] + "}"def _find_bucket(self, x: T) -> List[T]:"Find the bucket which should contain x. self must not be empty."for a in self.a:if x <= a[-1]: return areturn adef __contains__(self, x: T) -> bool:if self.size == 0: return Falsea = self._find_bucket(x)i = bisect_left(a, x)return i != len(a) and a[i] == xdef count(self, x: T) -> int:"Count the number of x."return self.index_right(x) - self.index(x)def add(self, x: T) -> None:"Add an element. / O(√N)"if self.size == 0:self.a = [[x]]self.size = 1returna = self._find_bucket(x)insort(a, x)self.size += 1if len(a) > len(self.a) * self.REBUILD_RATIO:self._build()def discard(self, x: T) -> bool:"Remove an element and return True if removed. / O(√N)"if self.size == 0: return Falsea = self._find_bucket(x)i = bisect_left(a, x)if i == len(a) or a[i] != x: return Falsea.pop(i)self.size -= 1if len(a) == 0: self._build()return Truedef lt(self, x: T) -> Union[T, None]:"Find the largest element < x, or None if it doesn't exist."for a in reversed(self.a):if a[0] < x:return a[bisect_left(a, x) - 1]def le(self, x: T) -> Union[T, None]:"Find the largest element <= x, or None if it doesn't exist."for a in reversed(self.a):if a[0] <= x:return a[bisect_right(a, x) - 1]def gt(self, x: T) -> Union[T, None]:"Find the smallest element > x, or None if it doesn't exist."for a in self.a:if a[-1] > x:return a[bisect_right(a, x)]def ge(self, x: T) -> Union[T, None]:"Find the smallest element >= x, or None if it doesn't exist."for a in self.a:if a[-1] >= x:return a[bisect_left(a, x)]def __getitem__(self, x: int) -> T:"Return the x-th element, or IndexError if it doesn't exist."if x < 0: x += self.sizeif x < 0: raise IndexErrorfor a in self.a:if x < len(a): return a[x]x -= len(a)raise IndexErrordef index(self, x: T) -> int:"Count the number of elements < x."ans = 0for a in self.a:if a[-1] >= x:return ans + bisect_left(a, x)ans += len(a)return ansdef index_right(self, x: T) -> int:"Count the number of elements <= x."ans = 0for a in self.a:if a[-1] > x:return ans + bisect_right(a, x)ans += len(a)return ansdef main():N = NI()A = NLI()D = [SortedMultiset() for _ in range(10001)]divs = []for i, a in enumerate(A):div = sorted(list(divisors(a)), reverse=True)divs.append(div)for d in div:D[d].add((a, i))divx = divs[0]for d in divx:D[d].discard((A[0], 0))ans = [A[0]] * Nfor i in range(N-1):div = divisors(ans[i])L = 10**10x = -1idx = -1for d in div:ms = D[d]if len(ms) == 0:continuea, ai = ms[0]l = ans[i] * a // d# print("#", d, a, ai, l)if l < L or (l == L and a < x):L = lx = aidx = aidivx = divs[idx]for d in divx:D[d].discard((x, idx))ans[i+1] = A[idx]# print(L, x, idx)print(*ans)if __name__ == "__main__":main()