結果

問題 No.14 最小公倍数ソート
ユーザー Mao-beta
提出日時 2024-02-29 02:02:38
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 470 ms / 5,000 ms
コード長 7,126 bytes
コンパイル時間 261 ms
コンパイル使用メモリ 82,432 KB
実行使用メモリ 92,232 KB
最終ジャッジ日時 2024-09-29 12:30:16
合計ジャッジ時間 8,489 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
import math
import bisect
from heapq import heapify, heappop, heappush
from collections import deque, defaultdict, Counter
from functools import lru_cache
from itertools import accumulate, combinations, permutations, product
sys.setrecursionlimit(1000000)
MOD = 10 ** 9 + 7
MOD99 = 998244353
input = lambda: sys.stdin.readline().strip()
NI = lambda: int(input())
NMI = lambda: map(int, input().split())
NLI = lambda: list(NMI())
SI = lambda: input()
SMI = lambda: input().split()
SLI = lambda: list(SMI())
EI = lambda m: [NLI() for _ in range(m)]
#  sieve[n]n
def make_prime_table(n):
sieve = list(range(n + 1))
sieve[0] = -1
sieve[1] = -1
for i in range(4, n + 1, 2):
sieve[i] = 2
for i in range(3, int(n ** 0.5) + 1, 2):
if sieve[i] != i:
continue
for j in range(i * i, n + 1, i * 2):
if sieve[j] == j:
sieve[j] = i
return sieve
prime_table = make_prime_table(1000)
#
primes = [p for i, p in enumerate(prime_table) if i == p]
#  prime_table使
def prime_factorize(n):
result = []
while n != 1:
p = prime_table[n]
e = 0
while n % p == 0:
n //= p
e += 1
result.append((p, e))
return result
# N()
def prime_fact(n):
root = int(n**0.5) + 1
prime_dict = {}
for i in range(2, root):
cnt = 0
while n % i == 0:
cnt += 1
n = n // i
if cnt:
prime_dict[i] = cnt
if n != 1:
prime_dict[n] = 1
return prime_dict
#
def divisors(x):
res = set()
for i in range(1, int(x**0.5) + 2):
if x % i == 0:
res.add(i)
res.add(x//i)
return res
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py
import math
from bisect import bisect_left, bisect_right, insort
from typing import Generic, Iterable, Iterator, TypeVar, Union, List
T = TypeVar('T')
class SortedMultiset(Generic[T]):
BUCKET_RATIO = 50
REBUILD_RATIO = 170
def _build(self, a=None) -> None:
"Evenly divide `a` into buckets."
if a is None: a = list(self)
size = self.size = len(a)
bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
self.a = [a[size * i // bucket_size: size * (i + 1) // bucket_size] for i in range(bucket_size)]
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)"
a = list(a)
if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)):
a = sorted(a)
self._build(a)
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedMultiset" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1: len(s) - 1] + "}"
def _find_bucket(self, x: T) -> List[T]:
"Find the bucket which should contain x. self must not be empty."
for a in self.a:
if x <= a[-1]: return a
return a
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a = self._find_bucket(x)
i = bisect_left(a, x)
return i != len(a) and a[i] == x
def count(self, x: T) -> int:
"Count the number of x."
return self.index_right(x) - self.index(x)
def add(self, x: T) -> None:
"Add an element. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return
a = self._find_bucket(x)
insort(a, x)
self.size += 1
if len(a) > len(self.a) * self.REBUILD_RATIO:
self._build()
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a = self._find_bucket(x)
i = bisect_left(a, x)
if i == len(a) or a[i] != x: return False
a.pop(i)
self.size -= 1
if len(a) == 0: self._build()
return True
def lt(self, x: T) -> Union[T, None]:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Union[T, None]:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Union[T, None]:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Union[T, None]:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, x: int) -> T:
"Return the x-th element, or IndexError if it doesn't exist."
if x < 0: x += self.size
if x < 0: raise IndexError
for a in self.a:
if x < len(a): return a[x]
x -= len(a)
raise IndexError
def index(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
def main():
N = NI()
A = NLI()
D = [SortedMultiset() for _ in range(10001)]
divs = []
for i, a in enumerate(A):
div = sorted(list(divisors(a)), reverse=True)
divs.append(div)
for d in div:
D[d].add((a, i))
divx = divs[0]
for d in divx:
D[d].discard((A[0], 0))
ans = [A[0]] * N
for i in range(N-1):
div = divisors(ans[i])
L = 10**10
x = -1
idx = -1
for d in div:
ms = D[d]
if len(ms) == 0:
continue
a, ai = ms[0]
l = ans[i] * a // d
# print("#", d, a, ai, l)
if l < L or (l == L and a < x):
L = l
x = a
idx = ai
divx = divs[idx]
for d in divx:
D[d].discard((x, idx))
ans[i+1] = A[idx]
# print(L, x, idx)
print(*ans)
if __name__ == "__main__":
main()
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0