結果

問題 No.42 貯金箱の溜息
ユーザー Mao-beta
提出日時 2024-03-01 12:13:04
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 254 ms / 5,000 ms
コード長 1,701 bytes
コンパイル時間 539 ms
コンパイル使用メモリ 82,432 KB
実行使用メモリ 77,844 KB
最終ジャッジ日時 2024-09-29 13:12:54
合計ジャッジ時間 1,704 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 3
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
import math
import bisect
from heapq import heapify, heappop, heappush
from collections import deque, defaultdict, Counter
from functools import lru_cache
from itertools import accumulate, combinations, permutations, product
sys.setrecursionlimit(1000000)
MOD = 10 ** 9 + 9
MOD99 = 998244353
input = lambda: sys.stdin.readline().strip()
NI = lambda: int(input())
NMI = lambda: map(int, input().split())
NLI = lambda: list(NMI())
SI = lambda: input()
SMI = lambda: input().split()
SLI = lambda: list(SMI())
EI = lambda m: [NLI() for _ in range(m)]
def div_sparse_one(f: list, k, M):
"""(1-x^k) x^M"""
res = f.copy()
for i in range(M+1):
if i+k <= M:
res[i+k] += res[i]
res[i+k] %= MOD
return res
def lagrangian_interpolation(P, n, mod):
"""
df(x)mod O(D^2)
https://ikatakos.com/pot/programming_algorithm/linear_algebra/lagrange_interpolation
:param P: d+1(x, f(x))list
:return: f(n) mod
"""
res = 0
for i, (xi, fx) in enumerate(P):
f = fx
for j, (xj, _) in enumerate(P):
if i == j:
continue
f = f * (n-xj) * pow(xi-xj, -1, mod) % mod
res = (res + f) % mod
return res
def main():
C = [1, 5, 10, 50, 100, 500]
f = [0] * 3001
f[0] = 1
for c in C:
f = div_sparse_one(f, c, 3000)
T = NI()
for _ in range(T):
M = NI()
r = M % 500
P = []
for i in range(6):
P.append([r + i*500, f[r + i*500]])
res = lagrangian_interpolation(P, M, MOD)
print(res)
if __name__ == "__main__":
main()
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0