結果
問題 | No.2660 Sweep Cards (Easy) |
ユーザー |
👑 |
提出日時 | 2024-03-01 21:30:46 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 343 ms / 4,000 ms |
コード長 | 5,142 bytes |
コンパイル時間 | 926 ms |
コンパイル使用メモリ | 111,904 KB |
実行使用メモリ | 159,768 KB |
最終ジャッジ日時 | 2024-09-29 13:33:15 |
合計ジャッジ時間 | 12,460 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 32 |
ソースコード
#include <cassert>#include <cmath>#include <cstdint>#include <cstdio>#include <cstdlib>#include <cstring>#include <algorithm>#include <bitset>#include <complex>#include <deque>#include <functional>#include <iostream>#include <limits>#include <map>#include <numeric>#include <queue>#include <random>#include <set>#include <sstream>#include <string>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>using namespace std;using Int = long long;template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i>= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }#define COLOR(s) ("\x1b[" s "m")////////////////////////////////////////////////////////////////////////////////template <unsigned M_> struct ModInt {static constexpr unsigned M = M_;unsigned x;constexpr ModInt() : x(0U) {}constexpr ModInt(unsigned x_) : x(x_ % M) {}constexpr ModInt(unsigned long long x_) : x(x_ % M) {}constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }ModInt pow(long long e) const {if (e < 0) return inv().pow(-e);ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;}ModInt inv() const {unsigned a = M, b = x; int y = 0, z = 1;for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }assert(a == 1U); return ModInt(y);}ModInt operator+() const { return *this; }ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }explicit operator bool() const { return x; }bool operator==(const ModInt &a) const { return (x == a.x); }bool operator!=(const ModInt &a) const { return (x != a.x); }friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }};////////////////////////////////////////////////////////////////////////////////constexpr unsigned MO = 1000000007;using Mint = ModInt<MO>;constexpr int LIM_INV = 10'000'010;Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];void prepare() {inv[1] = 1;for (int i = 2; i < LIM_INV; ++i) {inv[i] = -((Mint::M / i) * inv[Mint::M % i]);}fac[0] = invFac[0] = 1;for (int i = 1; i < LIM_INV; ++i) {fac[i] = fac[i - 1] * i;invFac[i] = invFac[i - 1] * inv[i];}}Mint binom(Int n, Int k) {if (n < 0) {if (k >= 0) {return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);} else if (n - k >= 0) {return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);} else {return 0;}} else {if (0 <= k && k <= n) {assert(n < LIM_INV);return fac[n] * invFac[k] * invFac[n - k];} else {return 0;}}}// f = (1+x)^a (1-x)^b// f' = a f/(1+x) - b f/(1-x)// (1-x^2) f' = (a(1-x) - b(1+x)) fvector<Mint> expand(int len, Mint a, Mint b) {vector<Mint> fs(len);fs[0] = 1;fs[1] = a - b;for (int i = 1; i < len - 1; ++i) {fs[i + 1] = inv[i + 1] * ((a - b) * fs[i] + (-a - b + (i - 1)) * fs[i - 1]);}return fs;}// 1 pile: Large Schroderint main() {prepare();int N, Q;for (; ~scanf("%d%*d%d", &N, &Q); ) {const auto fs = expand(N, N, -N);for (; Q--; ) {int K;scanf("%d", &K);Mint ans = inv[N] * K * fs[N - K];printf("%u\n", ans.x);}}return 0;}