結果
問題 | No.2660 Sweep Cards (Easy) |
ユーザー | NyaanNyaan |
提出日時 | 2024-03-01 22:46:42 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 636 ms / 4,000 ms |
コード長 | 45,755 bytes |
コンパイル時間 | 3,433 ms |
コンパイル使用メモリ | 282,784 KB |
実行使用メモリ | 272,672 KB |
最終ジャッジ日時 | 2024-09-29 14:39:21 |
合計ジャッジ時間 | 13,887 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 1 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 4 ms
5,248 KB |
testcase_17 | AC | 11 ms
5,248 KB |
testcase_18 | AC | 36 ms
12,240 KB |
testcase_19 | AC | 55 ms
21,384 KB |
testcase_20 | AC | 171 ms
74,004 KB |
testcase_21 | AC | 335 ms
141,476 KB |
testcase_22 | AC | 622 ms
272,504 KB |
testcase_23 | AC | 636 ms
272,636 KB |
testcase_24 | AC | 600 ms
272,540 KB |
testcase_25 | AC | 601 ms
272,640 KB |
testcase_26 | AC | 596 ms
272,644 KB |
testcase_27 | AC | 600 ms
272,520 KB |
testcase_28 | AC | 596 ms
272,660 KB |
testcase_29 | AC | 597 ms
272,524 KB |
testcase_30 | AC | 604 ms
272,512 KB |
testcase_31 | AC | 620 ms
272,532 KB |
testcase_32 | AC | 598 ms
272,540 KB |
testcase_33 | AC | 605 ms
272,672 KB |
testcase_34 | AC | 609 ms
272,536 KB |
ソースコード
/** * date : 2024-03-01 22:46:32 * author : Nyaan */ #define NDEBUG using namespace std; // intrinstic #include <immintrin.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cctype> #include <cfenv> #include <cfloat> #include <chrono> #include <cinttypes> #include <climits> #include <cmath> #include <complex> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <deque> #include <fstream> #include <functional> #include <initializer_list> #include <iomanip> #include <ios> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> #include <map> #include <memory> #include <new> #include <numeric> #include <ostream> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <streambuf> #include <string> #include <tuple> #include <type_traits> #include <typeinfo> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> // utility namespace Nyaan { using ll = long long; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; template <typename T> using V = vector<T>; template <typename T> using VV = vector<vector<T>>; using vi = vector<int>; using vl = vector<long long>; using vd = V<double>; using vs = V<string>; using vvi = vector<vector<int>>; using vvl = vector<vector<long long>>; template <typename T> using minpq = priority_queue<T, vector<T>, greater<T>>; template <typename T, typename U> struct P : pair<T, U> { template <typename... Args> P(Args... args) : pair<T, U>(args...) {} using pair<T, U>::first; using pair<T, U>::second; P &operator+=(const P &r) { first += r.first; second += r.second; return *this; } P &operator-=(const P &r) { first -= r.first; second -= r.second; return *this; } P &operator*=(const P &r) { first *= r.first; second *= r.second; return *this; } template <typename S> P &operator*=(const S &r) { first *= r, second *= r; return *this; } P operator+(const P &r) const { return P(*this) += r; } P operator-(const P &r) const { return P(*this) -= r; } P operator*(const P &r) const { return P(*this) *= r; } template <typename S> P operator*(const S &r) const { return P(*this) *= r; } P operator-() const { return P{-first, -second}; } }; using pl = P<ll, ll>; using pi = P<int, int>; using vp = V<pl>; constexpr int inf = 1001001001; constexpr long long infLL = 4004004004004004004LL; template <typename T> int sz(const T &t) { return t.size(); } template <typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template <typename T> inline T Max(const vector<T> &v) { return *max_element(begin(v), end(v)); } template <typename T> inline T Min(const vector<T> &v) { return *min_element(begin(v), end(v)); } template <typename T> inline long long Sum(const vector<T> &v) { return accumulate(begin(v), end(v), 0LL); } template <typename T> int lb(const vector<T> &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template <typename T> int ub(const vector<T> &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } constexpr long long TEN(int n) { long long ret = 1, x = 10; for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1); return ret; } template <typename T, typename U> pair<T, U> mkp(const T &t, const U &u) { return make_pair(t, u); } template <typename T> vector<T> mkrui(const vector<T> &v, bool rev = false) { vector<T> ret(v.size() + 1); if (rev) { for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1]; } else { for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; } return ret; }; template <typename T> vector<T> mkuni(const vector<T> &v) { vector<T> ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template <typename F> vector<int> mkord(int N, F f) { vector<int> ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template <typename T> vector<int> mkinv(vector<T> &v) { int max_val = *max_element(begin(v), end(v)); vector<int> inv(max_val + 1, -1); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } vector<int> mkiota(int n) { vector<int> ret(n); iota(begin(ret), end(ret), 0); return ret; } template <typename T> T mkrev(const T &v) { T w{v}; reverse(begin(w), end(w)); return w; } template <typename T> bool nxp(T &v) { return next_permutation(begin(v), end(v)); } // 返り値の型は入力の T に依存 // i 要素目 : [0, a[i]) template <typename T> vector<vector<T>> product(const vector<T> &a) { vector<vector<T>> ret; vector<T> v; auto dfs = [&](auto rc, int i) -> void { if (i == (int)a.size()) { ret.push_back(v); return; } for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back(); }; dfs(dfs, 0); return ret; } // F : function(void(T&)), mod を取る操作 // T : 整数型のときはオーバーフローに注意する template <typename T> T Power(T a, long long n, const T &I, const function<void(T &)> &f) { T res = I; for (; n; f(a = a * a), n >>= 1) { if (n & 1) f(res = res * a); } return res; } // T : 整数型のときはオーバーフローに注意する template <typename T> T Power(T a, long long n, const T &I = T{1}) { return Power(a, n, I, function<void(T &)>{[](T &) -> void {}}); } template <typename T> T Rev(const T &v) { T res = v; reverse(begin(res), end(res)); return res; } template <typename T> vector<T> Transpose(const vector<T> &v) { using U = typename T::value_type; int H = v.size(), W = v[0].size(); vector res(W, T(H, U{})); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { res[j][i] = v[i][j]; } } return res; } template <typename T> vector<T> Rotate(const vector<T> &v, int clockwise = true) { using U = typename T::value_type; int H = v.size(), W = v[0].size(); vector res(W, T(H, U{})); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { if (clockwise) { res[W - 1 - j][i] = v[i][j]; } else { res[j][H - 1 - i] = v[i][j]; } } } return res; } } // namespace Nyaan // bit operation namespace Nyaan { __attribute__((target("popcnt"))) inline int popcnt(const u64 &a) { return _mm_popcnt_u64(a); } inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; } template <typename T> inline int gbit(const T &a, int i) { return (a >> i) & 1; } template <typename T> inline void sbit(T &a, int i, bool b) { if (gbit(a, i) != b) a ^= T(1) << i; } constexpr long long PW(int n) { return 1LL << n; } constexpr long long MSK(int n) { return (1LL << n) - 1; } } // namespace Nyaan // inout namespace Nyaan { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v) { for (auto &x : v) is >> x; return is; } istream &operator>>(istream &is, __int128_t &x) { string S; is >> S; x = 0; int flag = 0; for (auto &c : S) { if (c == '-') { flag = true; continue; } x *= 10; x += c - '0'; } if (flag) x = -x; return is; } istream &operator>>(istream &is, __uint128_t &x) { string S; is >> S; x = 0; for (auto &c : S) { x *= 10; x += c - '0'; } return is; } ostream &operator<<(ostream &os, __int128_t x) { if (x == 0) return os << 0; if (x < 0) os << '-', x = -x; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } ostream &operator<<(ostream &os, __uint128_t x) { if (x == 0) return os << 0; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } void in() {} template <typename T, class... U> void in(T &t, U &...u) { cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &...u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; } // namespace Nyaan // debug #ifdef NyaanDebug #define trc(...) (void(0)) #else #define trc(...) (void(0)) #endif #ifdef NyaanLocal #define trc2(...) (void(0)) #else #define trc2(...) (void(0)) #endif // macro #define each(x, v) for (auto&& x : v) #define each2(x, y, v) for (auto&& [x, y] : v) #define all(v) (v).begin(), (v).end() #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--) #define fi first #define se second #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define die(...) \ do { \ Nyaan::out(__VA_ARGS__); \ return; \ } while (0) namespace Nyaan { void solve(); } int main() { Nyaan::solve(); } // using namespace std; using namespace std; // コンストラクタの MAX に 「C(n, r) や fac(n) でクエリを投げる最大の n 」 // を入れると倍速くらいになる // mod を超えて前計算して 0 割りを踏むバグは対策済み template <typename T> struct Binomial { vector<T> f, g, h; Binomial(int MAX = 0) { assert(T::get_mod() != 0 && "Binomial<mint>()"); f.resize(1, T{1}); g.resize(1, T{1}); h.resize(1, T{1}); if (MAX > 0) extend(MAX + 1); } void extend(int m = -1) { int n = f.size(); if (m == -1) m = n * 2; m = min<int>(m, T::get_mod()); if (n >= m) return; f.resize(m); g.resize(m); h.resize(m); for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i); g[m - 1] = f[m - 1].inverse(); h[m - 1] = g[m - 1] * f[m - 2]; for (int i = m - 2; i >= n; i--) { g[i] = g[i + 1] * T(i + 1); h[i] = g[i] * f[i - 1]; } } T fac(int i) { if (i < 0) return T(0); while (i >= (int)f.size()) extend(); return f[i]; } T finv(int i) { if (i < 0) return T(0); while (i >= (int)g.size()) extend(); return g[i]; } T inv(int i) { if (i < 0) return -inv(-i); while (i >= (int)h.size()) extend(); return h[i]; } T C(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r) * finv(r); } inline T operator()(int n, int r) { return C(n, r); } template <typename I> T multinomial(const vector<I>& r) { static_assert(is_integral<I>::value == true); int n = 0; for (auto& x : r) { if (x < 0) return T(0); n += x; } T res = fac(n); for (auto& x : r) res *= finv(x); return res; } template <typename I> T operator()(const vector<I>& r) { return multinomial(r); } T C_naive(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); T ret = T(1); r = min(r, n - r); for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--); return ret; } T P(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r); } // [x^r] 1 / (1-x)^n T H(int n, int r) { if (n < 0 || r < 0) return T(0); return r == 0 ? 1 : C(n + r - 1, r); } }; template <typename mint> struct FormalPowerSeries : vector<mint> { using vector<mint>::vector; using FPS = FormalPowerSeries; FPS &operator+=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; return *this; } FPS &operator+=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; return *this; } FPS &operator-=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const mint &v) { for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v; return *this; } FPS &operator/=(const FPS &r) { if (this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; if ((int)r.size() <= 64) { FPS f(*this), g(r); g.shrink(); mint coeff = g.back().inverse(); for (auto &x : g) x *= coeff; int deg = (int)f.size() - (int)g.size() + 1; int gs = g.size(); FPS quo(deg); for (int i = deg - 1; i >= 0; i--) { quo[i] = f[i + gs - 1]; for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j]; } *this = quo * coeff; this->resize(n, mint(0)); return *this; } return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev(); } FPS &operator%=(const FPS &r) { *this -= *this / r * r; shrink(); return *this; } FPS operator+(const FPS &r) const { return FPS(*this) += r; } FPS operator+(const mint &v) const { return FPS(*this) += v; } FPS operator-(const FPS &r) const { return FPS(*this) -= r; } FPS operator-(const mint &v) const { return FPS(*this) -= v; } FPS operator*(const FPS &r) const { return FPS(*this) *= r; } FPS operator*(const mint &v) const { return FPS(*this) *= v; } FPS operator/(const FPS &r) const { return FPS(*this) /= r; } FPS operator%(const FPS &r) const { return FPS(*this) %= r; } FPS operator-() const { FPS ret(this->size()); for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i]; return ret; } void shrink() { while (this->size() && this->back() == mint(0)) this->pop_back(); } FPS rev() const { FPS ret(*this); reverse(begin(ret), end(ret)); return ret; } FPS dot(FPS r) const { FPS ret(min(this->size(), r.size())); for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } // 前 sz 項を取ってくる。sz に足りない項は 0 埋めする FPS pre(int sz) const { FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz)); if ((int)ret.size() < sz) ret.resize(sz); return ret; } FPS operator>>(int sz) const { if ((int)this->size() <= sz) return {}; FPS ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } FPS operator<<(int sz) const { FPS ret(*this); ret.insert(ret.begin(), sz, mint(0)); return ret; } FPS diff() const { const int n = (int)this->size(); FPS ret(max(0, n - 1)); mint one(1), coeff(1); for (int i = 1; i < n; i++) { ret[i - 1] = (*this)[i] * coeff; coeff += one; } return ret; } FPS integral() const { const int n = (int)this->size(); FPS ret(n + 1); ret[0] = mint(0); if (n > 0) ret[1] = mint(1); auto mod = mint::get_mod(); for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i); for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i]; return ret; } mint eval(mint x) const { mint r = 0, w = 1; for (auto &v : *this) r += w * v, w *= x; return r; } FPS log(int deg = -1) const { assert(!(*this).empty() && (*this)[0] == mint(1)); if (deg == -1) deg = (int)this->size(); return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } FPS pow(int64_t k, int deg = -1) const { const int n = (int)this->size(); if (deg == -1) deg = n; if (k == 0) { FPS ret(deg); if (deg) ret[0] = 1; return ret; } for (int i = 0; i < n; i++) { if ((*this)[i] != mint(0)) { mint rev = mint(1) / (*this)[i]; FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg); ret *= (*this)[i].pow(k); ret = (ret << (i * k)).pre(deg); if ((int)ret.size() < deg) ret.resize(deg, mint(0)); return ret; } if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0)); } return FPS(deg, mint(0)); } static void *ntt_ptr; static void set_fft(); FPS &operator*=(const FPS &r); void ntt(); void intt(); void ntt_doubling(); static int ntt_pr(); FPS inv(int deg = -1) const; FPS exp(int deg = -1) const; }; template <typename mint> void *FormalPowerSeries<mint>::ntt_ptr = nullptr; /** * @brief 多項式/形式的冪級数ライブラリ * @docs docs/fps/formal-power-series.md */ // find Q(P(x)) mod x ^ min(deg(P), deg(Q)) template <typename mint> FormalPowerSeries<mint> Composition(FormalPowerSeries<mint> P, FormalPowerSeries<mint> Q, Binomial<mint>& C, int deg = -1) { using fps = FormalPowerSeries<mint>; int N = (deg == -1) ? min(P.size(), Q.size()) : deg; if (N == 0) return fps{}; P.shrink(); if (P.size() == 0) { fps R(N, mint(0)); R[0] = Q.empty() ? mint(0) : Q[0]; return R; } if (N == 1) return fps{Q.eval(P[0])}; P.resize(N, mint(0)); Q.resize(N, mint(0)); int M = max<int>(1, sqrt(N / log2(N))); int L = (N + M - 1) / M; fps Pm = fps{begin(P), begin(P) + M}; fps Pr = fps{begin(P) + M, end(P)}; int J = 31 - __builtin_clz(N - 1) + 1; vector<fps> pms(J); pms[0] = Pm; for (int i = 1; i < J; i++) pms[i] = (pms[i - 1] * pms[i - 1]).pre(N); auto comp = [&](auto rec, int left, int j) -> fps { if (j == 1) { mint Q1 = left + 0 < (int)Q.size() ? Q[left + 0] : mint(0); mint Q2 = left + 1 < (int)Q.size() ? Q[left + 1] : mint(0); return (pms[0].pre(N) * Q2 + Q1).pre(N); } if (N <= left) return fps{}; fps Q1 = rec(rec, left, j - 1); fps Q2 = rec(rec, left + (1 << (j - 1)), j - 1); return (Q1 + pms[j - 1].pre(N) * Q2).pre(N); }; fps QPm = comp(comp, 0, J); fps R = QPm; fps pw_Pr{mint(1)}; fps dPm = Pm.diff(); dPm.shrink(); // if dPm[0] == 0, dPm.inv() is undefined int deg_dPm = 0; while (deg_dPm != (int)dPm.size() && dPm[deg_dPm] == mint(0)) deg_dPm++; fps idPm = dPm.empty() ? fps{} : (dPm >> deg_dPm).inv(N); for (int l = 1, d = M; l <= L && d < N; l++, d += M) { pw_Pr = (pw_Pr * Pr).pre(N - d); if (dPm.empty()) { R += (pw_Pr * Q[l]) << d; } else { idPm.resize(N - d); QPm = ((QPm.diff() >> deg_dPm) * idPm).pre(N - d); R += ((QPm * pw_Pr).pre(N - d) * C.finv(l)) << d; }; } R.resize(N, mint(0)); return R; } /** * @brief 関数の合成( $\mathrm{O}\left((N \log N)^{\frac{3}{2}}\right)$ ) * @docs docs/fps/fps-composition.md */ // f を入力として, f(g(x)) = x を満たす g(x) mod x^{deg} を返す template <typename fps> fps compositional_inverse(fps f, int deg = -1) { using mint = typename fps::value_type; if (deg == -1) deg = f.size(); assert((int)f.size() >= 2 && f[0] == 0 && f[1] != 0); fps g{0, f[1].inverse()}; Binomial<mint> binom; for (int d = 2; d < deg; d *= 2) { fps f2{begin(f), begin(f) + min(2 * d + 1, (int)f.size())}; fps fg = Composition<mint>(g, f2, binom, 2 * d + 1); fps fdg = (fg.diff() * g.diff().inv(2 * d)).pre(2 * d); assert(fdg[0] != 0); g = (g - (fg - fps{0, 1}) * fdg.inv(2 * d)).pre(2 * d); } return {begin(g), begin(g) + deg}; } // f(g(x)) = x を満たす g(x) mod x^{deg} を返す // calc_f(g, d) は f(g(x)) mod x^d を計算する関数 template <typename fps> fps compositional_inverse(function<fps(fps, int)> calc_f, int deg) { fps g = calc_f(fps{0, 1}, 2); assert(g[0] == 0 && g[1] != 0); g[1] = g[1].inverse(); for (int d = 2; d < deg; d *= 2) { fps fg = calc_f(g, 2 * d + 1); fps fdg = (fg.diff() * g.diff().inv(2 * d)).pre(2 * d); g = (g - (fg - fps{0, 1}) * fdg.inv(2 * d)).pre(2 * d); } return {begin(g), begin(g) + deg}; } /* * @brief 逆関数 */ using namespace std; template <typename Int, typename UInt, typename Long, typename ULong, int id> struct ArbitraryLazyMontgomeryModIntBase { using mint = ArbitraryLazyMontgomeryModIntBase; inline static UInt mod; inline static UInt r; inline static UInt n2; static constexpr int bit_length = sizeof(UInt) * 8; static UInt get_r() { UInt ret = mod; while (mod * ret != 1) ret *= UInt(2) - mod * ret; return ret; } static void set_mod(UInt m) { assert(m < (UInt(1u) << (bit_length - 2))); assert((m & 1) == 1); mod = m, n2 = -ULong(m) % m, r = get_r(); } UInt a; ArbitraryLazyMontgomeryModIntBase() : a(0) {} ArbitraryLazyMontgomeryModIntBase(const Long &b) : a(reduce(ULong(b % mod + mod) * n2)){}; static UInt reduce(const ULong &b) { return (b + ULong(UInt(b) * UInt(-r)) * mod) >> bit_length; } mint &operator+=(const mint &b) { if (Int(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint &operator-=(const mint &b) { if (Int(a -= b.a) < 0) a += 2 * mod; return *this; } mint &operator*=(const mint &b) { a = reduce(ULong(a) * b.a); return *this; } mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } mint operator+(const mint &b) const { return mint(*this) += b; } mint operator-(const mint &b) const { return mint(*this) -= b; } mint operator*(const mint &b) const { return mint(*this) *= b; } mint operator/(const mint &b) const { return mint(*this) /= b; } bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } mint operator-() const { return mint(0) - mint(*this); } mint operator+() const { return mint(*this); } mint pow(ULong n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul, n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { Long t; is >> t; b = ArbitraryLazyMontgomeryModIntBase(t); return (is); } mint inverse() const { Int x = get(), y = get_mod(), u = 1, v = 0; while (y > 0) { Int t = x / y; swap(x -= t * y, y); swap(u -= t * v, v); } return mint{u}; } UInt get() const { UInt ret = reduce(a); return ret >= mod ? ret - mod : ret; } static UInt get_mod() { return mod; } }; // id に適当な乱数を割り当てて使う template <int id> using ArbitraryLazyMontgomeryModInt = ArbitraryLazyMontgomeryModIntBase<int, unsigned int, long long, unsigned long long, id>; template <int id> using ArbitraryLazyMontgomeryModInt64bit = ArbitraryLazyMontgomeryModIntBase<long long, unsigned long long, __int128_t, __uint128_t, id>; int64_t mod_sqrt(const int64_t &a, const int64_t &p) { assert(0 <= a && a < p); if (a < 2) return a; using Mint = ArbitraryLazyMontgomeryModInt<409075245>; Mint::set_mod(p); if (Mint(a).pow((p - 1) >> 1) != 1) return -1; Mint b = 1, one = 1; while (b.pow((p - 1) >> 1) == 1) b += one; int64_t m = p - 1, e = 0; while (m % 2 == 0) m >>= 1, e += 1; Mint x = Mint(a).pow((m - 1) >> 1); Mint y = Mint(a) * x * x; x *= a; Mint z = Mint(b).pow(m); while (y != 1) { int64_t j = 0; Mint t = y; while (t != one) { j += 1; t *= t; } z = z.pow(int64_t(1) << (e - j - 1)); x *= z; z *= z; y *= z; e = j; } return x.get(); } /** * @brief mod sqrt(Tonelli-Shanks algorithm) * @docs docs/modulo/mod-sqrt.md */ template <typename mint> FormalPowerSeries<mint> sqrt(const FormalPowerSeries<mint> &f, int deg = -1) { if (deg == -1) deg = (int)f.size(); if ((int)f.size() == 0) return FormalPowerSeries<mint>(deg, 0); if (f[0] == mint(0)) { for (int i = 1; i < (int)f.size(); i++) { if (f[i] != mint(0)) { if (i & 1) return {}; if (deg - i / 2 <= 0) break; auto ret = sqrt(f >> i, deg - i / 2); if (ret.empty()) return {}; ret = ret << (i / 2); if ((int)ret.size() < deg) ret.resize(deg, mint(0)); return ret; } } return FormalPowerSeries<mint>(deg, 0); } int64_t sqr = mod_sqrt(f[0].get(), mint::get_mod()); if (sqr == -1) return {}; assert(sqr * sqr % mint::get_mod() == f[0].get()); FormalPowerSeries<mint> ret = {mint(sqr)}; mint inv2 = mint(2).inverse(); for (int i = 1; i < deg; i <<= 1) { ret = (ret + f.pre(i << 1) * ret.inv(i << 1)) * inv2; } return ret.pre(deg); } /** * @brief 平方根 * @docs docs/fps/fps-sqrt.md */ // // #include "fps/ntt-friendly-fps.hpp" template <uint32_t mod> struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); static_assert(r * mod == 1, "this code has bugs."); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint operator+() const { return mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0; while (y > 0) { t = x / y; x -= t * y, u -= t * v; tmp = x, x = y, y = tmp; tmp = u, u = v, v = tmp; } return mint{u}; } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt<mod>(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; template <typename mint> struct NTT { static constexpr uint32_t get_pr() { uint32_t _mod = mint::get_mod(); using u64 = uint64_t; u64 ds[32] = {}; int idx = 0; u64 m = _mod - 1; for (u64 i = 2; i * i <= m; ++i) { if (m % i == 0) { ds[idx++] = i; while (m % i == 0) m /= i; } } if (m != 1) ds[idx++] = m; uint32_t _pr = 2; while (1) { int flg = 1; for (int i = 0; i < idx; ++i) { u64 a = _pr, b = (_mod - 1) / ds[i], r = 1; while (b) { if (b & 1) r = r * a % _mod; a = a * a % _mod; b >>= 1; } if (r == 1) { flg = 0; break; } } if (flg == 1) break; ++_pr; } return _pr; }; static constexpr uint32_t mod = mint::get_mod(); static constexpr uint32_t pr = get_pr(); static constexpr int level = __builtin_ctzll(mod - 1); mint dw[level], dy[level]; void setwy(int k) { mint w[level], y[level]; w[k - 1] = mint(pr).pow((mod - 1) / (1 << k)); y[k - 1] = w[k - 1].inverse(); for (int i = k - 2; i > 0; --i) w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1]; dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2]; for (int i = 3; i < k; ++i) { dw[i] = dw[i - 1] * y[i - 2] * w[i]; dy[i] = dy[i - 1] * w[i - 2] * y[i]; } } NTT() { setwy(level); } void fft4(vector<mint> &a, int k) { if ((int)a.size() <= 1) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } if (k & 1) { int v = 1 << (k - 1); for (int j = 0; j < v; ++j) { mint ajv = a[j + v]; a[j + v] = a[j] - ajv; a[j] += ajv; } } int u = 1 << (2 + (k & 1)); int v = 1 << (k - 2 - (k & 1)); mint one = mint(1); mint imag = dw[1]; while (v) { // jh = 0 { int j0 = 0; int j1 = v; int j2 = j1 + v; int j3 = j2 + v; for (; j0 < v; ++j0, ++j1, ++j2, ++j3) { mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3]; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3; } } // jh >= 1 mint ww = one, xx = one * dw[2], wx = one; for (int jh = 4; jh < u;) { ww = xx * xx, wx = ww * xx; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for (; j0 < je; ++j0, ++j2) { mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww, t3 = a[j2 + v] * wx; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3; } xx *= dw[__builtin_ctzll((jh += 4))]; } u <<= 2; v >>= 2; } } void ifft4(vector<mint> &a, int k) { if ((int)a.size() <= 1) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } int u = 1 << (k - 2); int v = 1; mint one = mint(1); mint imag = dy[1]; while (u) { // jh = 0 { int j0 = 0; int j1 = v; int j2 = v + v; int j3 = j2 + v; for (; j0 < v; ++j0, ++j1, ++j2, ++j3) { mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag; a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3; a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3; } } // jh >= 1 mint ww = one, xx = one * dy[2], yy = one; u <<= 2; for (int jh = 4; jh < u;) { ww = xx * xx, yy = xx * imag; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for (; j0 < je; ++j0, ++j2) { mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy; a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww; a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww; } xx *= dy[__builtin_ctzll(jh += 4)]; } u >>= 4; v <<= 2; } if (k & 1) { u = 1 << (k - 1); for (int j = 0; j < u; ++j) { mint ajv = a[j] - a[j + u]; a[j] += a[j + u]; a[j + u] = ajv; } } } void ntt(vector<mint> &a) { if ((int)a.size() <= 1) return; fft4(a, __builtin_ctz(a.size())); } void intt(vector<mint> &a) { if ((int)a.size() <= 1) return; ifft4(a, __builtin_ctz(a.size())); mint iv = mint(a.size()).inverse(); for (auto &x : a) x *= iv; } vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) { int l = a.size() + b.size() - 1; if (min<int>(a.size(), b.size()) <= 40) { vector<mint> s(l); for (int i = 0; i < (int)a.size(); ++i) for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j]; return s; } int k = 2, M = 4; while (M < l) M <<= 1, ++k; setwy(k); vector<mint> s(M); for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i]; fft4(s, k); if (a.size() == b.size() && a == b) { for (int i = 0; i < M; ++i) s[i] *= s[i]; } else { vector<mint> t(M); for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i]; fft4(t, k); for (int i = 0; i < M; ++i) s[i] *= t[i]; } ifft4(s, k); s.resize(l); mint invm = mint(M).inverse(); for (int i = 0; i < l; ++i) s[i] *= invm; return s; } void ntt_doubling(vector<mint> &a) { int M = (int)a.size(); auto b = a; intt(b); mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1)); for (int i = 0; i < M; i++) b[i] *= r, r *= zeta; ntt(b); copy(begin(b), end(b), back_inserter(a)); } }; namespace ArbitraryNTT { using i64 = int64_t; using u128 = __uint128_t; constexpr int32_t m0 = 167772161; constexpr int32_t m1 = 469762049; constexpr int32_t m2 = 754974721; using mint0 = LazyMontgomeryModInt<m0>; using mint1 = LazyMontgomeryModInt<m1>; using mint2 = LazyMontgomeryModInt<m2>; constexpr int r01 = mint1(m0).inverse().get(); constexpr int r02 = mint2(m0).inverse().get(); constexpr int r12 = mint2(m1).inverse().get(); constexpr int r02r12 = i64(r02) * r12 % m2; constexpr i64 w1 = m0; constexpr i64 w2 = i64(m0) * m1; template <typename T, typename submint> vector<submint> mul(const vector<T> &a, const vector<T> &b) { static NTT<submint> ntt; vector<submint> s(a.size()), t(b.size()); for (int i = 0; i < (int)a.size(); ++i) s[i] = i64(a[i] % submint::get_mod()); for (int i = 0; i < (int)b.size(); ++i) t[i] = i64(b[i] % submint::get_mod()); return ntt.multiply(s, t); } template <typename T> vector<int> multiply(const vector<T> &s, const vector<T> &t, int mod) { auto d0 = mul<T, mint0>(s, t); auto d1 = mul<T, mint1>(s, t); auto d2 = mul<T, mint2>(s, t); int n = d0.size(); vector<int> ret(n); const int W1 = w1 % mod; const int W2 = w2 % mod; for (int i = 0; i < n; i++) { int n1 = d1[i].get(), n2 = d2[i].get(), a = d0[i].get(); int b = i64(n1 + m1 - a) * r01 % m1; int c = (i64(n2 + m2 - a) * r02r12 + i64(m2 - b) * r12) % m2; ret[i] = (i64(a) + i64(b) * W1 + i64(c) * W2) % mod; } return ret; } template <typename mint> vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) { if (a.size() == 0 && b.size() == 0) return {}; if (min<int>(a.size(), b.size()) < 128) { vector<mint> ret(a.size() + b.size() - 1); for (int i = 0; i < (int)a.size(); ++i) for (int j = 0; j < (int)b.size(); ++j) ret[i + j] += a[i] * b[j]; return ret; } vector<int> s(a.size()), t(b.size()); for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i].get(); for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i].get(); vector<int> u = multiply<int>(s, t, mint::get_mod()); vector<mint> ret(u.size()); for (int i = 0; i < (int)u.size(); ++i) ret[i] = mint(u[i]); return ret; } template <typename T> vector<u128> multiply_u128(const vector<T> &s, const vector<T> &t) { if (s.size() == 0 && t.size() == 0) return {}; if (min<int>(s.size(), t.size()) < 128) { vector<u128> ret(s.size() + t.size() - 1); for (int i = 0; i < (int)s.size(); ++i) for (int j = 0; j < (int)t.size(); ++j) ret[i + j] += i64(s[i]) * t[j]; return ret; } auto d0 = mul<T, mint0>(s, t); auto d1 = mul<T, mint1>(s, t); auto d2 = mul<T, mint2>(s, t); int n = d0.size(); vector<u128> ret(n); for (int i = 0; i < n; i++) { i64 n1 = d1[i].get(), n2 = d2[i].get(); i64 a = d0[i].get(); i64 b = (n1 + m1 - a) * r01 % m1; i64 c = ((n2 + m2 - a) * r02r12 + (m2 - b) * r12) % m2; ret[i] = a + b * w1 + u128(c) * w2; } return ret; } } // namespace ArbitraryNTT template <typename mint> void FormalPowerSeries<mint>::set_fft() { ntt_ptr = nullptr; } template <typename mint> void FormalPowerSeries<mint>::ntt() { exit(1); } template <typename mint> void FormalPowerSeries<mint>::intt() { exit(1); } template <typename mint> void FormalPowerSeries<mint>::ntt_doubling() { exit(1); } template <typename mint> int FormalPowerSeries<mint>::ntt_pr() { exit(1); } template <typename mint> FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=( const FormalPowerSeries<mint>& r) { if (this->empty() || r.empty()) { this->clear(); return *this; } auto ret = ArbitraryNTT::multiply(*this, r); return *this = FormalPowerSeries<mint>(ret.begin(), ret.end()); } template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const { assert((*this)[0] != mint(0)); if (deg == -1) deg = (*this).size(); FormalPowerSeries<mint> ret({mint(1) / (*this)[0]}); for (int i = 1; i < deg; i <<= 1) ret = (ret + ret - ret * ret * (*this).pre(i << 1)).pre(i << 1); return ret.pre(deg); } template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const { assert((*this).size() == 0 || (*this)[0] == mint(0)); if (deg == -1) deg = (int)this->size(); FormalPowerSeries<mint> ret({mint(1)}); for (int i = 1; i < deg; i <<= 1) { ret = (ret * (pre(i << 1) + mint(1) - ret.log(i << 1))).pre(i << 1); } return ret.pre(deg); } // using namespace std; // g が sparse を仮定, f * g.inv() を計算 template <typename mint> FormalPowerSeries<mint> sparse_div(const FormalPowerSeries<mint>& f, const FormalPowerSeries<mint>& g, int deg = -1) { assert(g.empty() == false && g[0] != mint(0)); if (deg == -1) deg = f.size(); mint ig0 = g[0].inverse(); FormalPowerSeries<mint> s = f * ig0; s.resize(deg); vector<pair<int, mint>> gs; for (int i = 1; i < (int)g.size(); i++) { if (g[i] != 0) gs.emplace_back(i, g[i] * ig0); } for (int i = 0; i < deg; i++) { for (auto& [j, g_j] : gs) { if (i + j >= deg) break; s[i + j] -= s[i] * g_j; } } return s; } template <typename mint> FormalPowerSeries<mint> sparse_inv(const FormalPowerSeries<mint>& f, int deg = -1) { assert(f.empty() == false && f[0] != mint(0)); if (deg == -1) deg = f.size(); vector<pair<int, mint>> fs; for (int i = 1; i < (int)f.size(); i++) { if (f[i] != 0) fs.emplace_back(i, f[i]); } FormalPowerSeries<mint> g(deg); mint if0 = f[0].inverse(); if (0 < deg) g[0] = if0; for (int k = 1; k < deg; k++) { for (auto& [j, fj] : fs) { if (k < j) break; g[k] += g[k - j] * fj; } g[k] *= -if0; } return g; } template <typename mint> FormalPowerSeries<mint> sparse_log(const FormalPowerSeries<mint>& f, int deg = -1) { assert(f.empty() == false && f[0] == 1); if (deg == -1) deg = f.size(); vector<pair<int, mint>> fs; for (int i = 1; i < (int)f.size(); i++) { if (f[i] != 0) fs.emplace_back(i, f[i]); } int mod = mint::get_mod(); static vector<mint> invs{1, 1}; while ((int)invs.size() <= deg) { int i = invs.size(); invs.push_back((-invs[mod % i]) * (mod / i)); } FormalPowerSeries<mint> g(deg); for (int k = 0; k < deg - 1; k++) { for (auto& [j, fj] : fs) { if (k < j) break; int i = k - j; g[k + 1] -= g[i + 1] * fj * (i + 1); } g[k + 1] *= invs[k + 1]; if (k + 1 < (int)f.size()) g[k + 1] += f[k + 1]; } return g; } template <typename mint> FormalPowerSeries<mint> sparse_exp(const FormalPowerSeries<mint>& f, int deg = -1) { assert(f.empty() or f[0] == 0); if (deg == -1) deg = f.size(); vector<pair<int, mint>> fs; for (int i = 1; i < (int)f.size(); i++) { if (f[i] != 0) fs.emplace_back(i, f[i]); } int mod = mint::get_mod(); static vector<mint> invs{1, 1}; while ((int)invs.size() <= deg) { int i = invs.size(); invs.push_back((-invs[mod % i]) * (mod / i)); } FormalPowerSeries<mint> g(deg); if (deg) g[0] = 1; for (int k = 0; k < deg - 1; k++) { for (auto& [ip1, fip1] : fs) { int i = ip1 - 1; if (k < i) break; g[k + 1] += fip1 * g[k - i] * (i + 1); } g[k + 1] *= invs[k + 1]; } return g; } template <typename mint> FormalPowerSeries<mint> sparse_pow(const FormalPowerSeries<mint>& f, long long k, int deg = -1) { if (deg == -1) deg = f.size(); if (k == 0) { FormalPowerSeries<mint> g(deg); if (deg) g[0] = 1; return g; } int zero = 0; while (zero != (int)f.size() and f[zero] == 0) zero++; if (zero == (int)f.size() or __int128_t(zero) * k >= deg) { return FormalPowerSeries<mint>(deg, 0); } if (zero != 0) { FormalPowerSeries<mint> suf{begin(f) + zero, end(f)}; auto g = sparse_pow(suf, k, deg - zero * k); FormalPowerSeries<mint> h(zero * k, 0); copy(begin(g), end(g), back_inserter(h)); return h; } int mod = mint::get_mod(); static vector<mint> invs{1, 1}; while ((int)invs.size() <= deg) { int i = invs.size(); invs.push_back((-invs[mod % i]) * (mod / i)); } vector<pair<int, mint>> fs; for (int i = 1; i < (int)f.size(); i++) { if (f[i] != 0) fs.emplace_back(i, f[i]); } FormalPowerSeries<mint> g(deg); g[0] = f[0].pow(k); mint denom = f[0].inverse(); k %= mint::get_mod(); for (int a = 1; a < deg; a++) { for (auto& [i, f_i] : fs) { if (a < i) break; g[a] += f_i * g[a - i] * ((k + 1) * i - a); } g[a] *= denom * invs[a]; } return g; } /** * @brief sparse な形式的冪級数の演算 */ // using namespace Nyaan; using mint = LazyMontgomeryModInt<1000000007>; using vm = vector<mint>; using vvm = vector<vm>; Binomial<mint> C; using fps = FormalPowerSeries<mint>; using namespace Nyaan; void test() { rep1(N, 10) { set<vvi> st, vis; auto add = [&](vvi v) { if (vis.count(v) == 0) { st.emplace(v); vis.emplace(v); } }; vvi init; rep(i, N) init.push_back(vi{int(i)}); add(init); vm cur(N + 1); while (sz(st)) { auto v = *begin(st); st.erase(v); cur[sz(v)] += 1; rep(i, sz(v) - 1) { { vvi w = v; vi a = w[i]; vi b = w[i + 1]; copy(all(b), back_inserter(a)); w.erase(begin(w) + i + 1); w[i] = a; add(w); } { vvi w = v; vi a = w[i]; vi b = w[i + 1]; copy(all(a), back_inserter(b)); w.erase(begin(w) + i + 1); w[i] = b; add(w); } } } trc2(N, cur); } } void q() { // test(); inl(N, dummy, M); vl X(M); in(X); #ifdef NyaanLocal { // https://oeis.org/A033877 fps f = fps{1, -3} - sqrt(fps{1, -6, 1}, N + 6); f = f >> 1; f *= mint{2}.inverse(); f += fps{1}; f = f << 1; trc(f); rep1(i, N) { trc(f.pow(i)); } fps g = compositional_inverse(f); trc(g); trc(fps{0, 1, -1} * (fps{1, 1}.inv(N + 5))); } #endif /* fps f(N + 1), g(N + 1); rep(i, N + 1) f[i] = C(N, i), g[i] = C(N, i) * (i % 2 ? -1 : 1); trc(f); trc(g); f *= g.inv(); trc(f); */ fps dp(N + 10); dp[0] = 1, dp[1] = N * 2; reg(n, 2, N + 1) { dp[n] = (dp[n - 1] * N * 2 + dp[n - 2] * (n - 2)) * C.inv(n); } trc(dp); each(K, X) { out(dp[N - K] * K * C.inv(N)); } } void Nyaan::solve() { int t = 1; // in(t); while (t--) q(); }