結果
問題 | No.5007 Steiner Space Travel |
ユーザー | LyricalMaestro |
提出日時 | 2024-03-03 03:58:21 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 189 ms / 1,000 ms |
コード長 | 7,125 bytes |
コンパイル時間 | 302 ms |
コンパイル使用メモリ | 81,572 KB |
実行使用メモリ | 77,852 KB |
スコア | 7,977,999 |
最終ジャッジ日時 | 2024-03-03 03:58:28 |
合計ジャッジ時間 | 7,362 ms |
ジャッジサーバーID (参考情報) |
judge15 / judge13 |
純コード判定しない問題か言語 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 189 ms
77,712 KB |
testcase_01 | AC | 158 ms
77,724 KB |
testcase_02 | AC | 158 ms
77,720 KB |
testcase_03 | AC | 170 ms
77,724 KB |
testcase_04 | AC | 172 ms
77,852 KB |
testcase_05 | AC | 159 ms
77,724 KB |
testcase_06 | AC | 159 ms
77,720 KB |
testcase_07 | AC | 159 ms
77,720 KB |
testcase_08 | AC | 170 ms
77,724 KB |
testcase_09 | AC | 158 ms
77,724 KB |
testcase_10 | AC | 158 ms
77,720 KB |
testcase_11 | AC | 158 ms
77,712 KB |
testcase_12 | AC | 161 ms
77,720 KB |
testcase_13 | AC | 158 ms
77,720 KB |
testcase_14 | AC | 169 ms
77,724 KB |
testcase_15 | AC | 160 ms
77,724 KB |
testcase_16 | AC | 170 ms
77,720 KB |
testcase_17 | AC | 170 ms
77,712 KB |
testcase_18 | AC | 162 ms
77,720 KB |
testcase_19 | AC | 160 ms
77,724 KB |
testcase_20 | AC | 157 ms
77,720 KB |
testcase_21 | AC | 158 ms
77,724 KB |
testcase_22 | AC | 157 ms
77,724 KB |
testcase_23 | AC | 169 ms
77,724 KB |
testcase_24 | AC | 159 ms
77,716 KB |
testcase_25 | AC | 169 ms
77,720 KB |
testcase_26 | AC | 170 ms
77,724 KB |
testcase_27 | AC | 158 ms
77,720 KB |
testcase_28 | AC | 159 ms
77,724 KB |
testcase_29 | AC | 169 ms
77,712 KB |
ソースコード
import math import sys import random ALPHA = 5 class Result: def __init__(self, stations, travel_seq): self.stations = [] for x, y in stations: self.stations.append(f"{x} {y}") self.travel_seq = [] for t, r in travel_seq: self.travel_seq.append(f"{t} {r}") def calc_score(stations, travel_seq, planets): # スコア計算 S = 0 for i in range(len(travel_seq) - 1): t1, r1 = travel_seq[i] t2, r2 = travel_seq[i + 1] if t1 == 2 and t2 == 2: x1, y1 = stations[r1 - 1] x2, y2 = stations[r2 - 1] S += ((x1 - x2) ** 2 + (y1 - y2) ** 2) elif t1 == 2 and t2 == 1: x1, y1 = stations[r1 - 1] x2, y2 = planets[r2 - 1] S += ALPHA * ((x1 - x2) ** 2 + (y1 - y2) ** 2) elif t1 == 1 and t2 == 2: x1, y1 = planets[r1 - 1] x2, y2 = stations[r2 - 1] S += ALPHA * ((x1 - x2) ** 2 + (y1 - y2) ** 2) else: # t1 == 1 and t2 == 1 alpha2 = ALPHA ** 2 x1, y1 = planets[r1 - 1] x2, y2 = planets[r2 - 1] S += alpha2 * ((x1 - x2) ** 2 + (y1 - y2) ** 2) print(f"S = {S}", file=sys.stderr, flush=True) score = (10 ** 9) / (1000 + math.sqrt(S)) score = int(score) print(f"score = {score}", file=sys.stderr, flush=True) def k_means(planets, M): cluser_array = [-1] * len(planets) for i in range(len(planets)): cluster_index = random.randint(0, M - 1) cluser_array[i] = cluster_index ave_x = 0.0 ave_y = 0.0 for x, y in planets: ave_x += x ave_y += y ave_x /= len(planets) ave_y /= len(planets) for _ in range(100): # Mステップ averages_x = [0] * M averages_y = [0] * M counts = [0] * M for i, cluster_index in enumerate(cluser_array): averages_x[cluster_index] += planets[i][0] averages_y[cluster_index] += planets[i][1] counts[cluster_index] += 1 for i in range(M): if counts[i] > 0: averages_x[i] /= counts[i] averages_y[i] /= counts[i] else: averages_x[i] = ave_x averages_y[i] = ave_y # Eステップ for i, planet in enumerate(planets): min_distance = float("inf") min_cluster_index = -1 for j in range(M): distance = (planet[0] - averages_x[j]) ** 2 + (planet[1] - averages_y[j]) ** 2 if distance < min_distance: min_distance = distance min_cluster_index = j cluser_array[i] = min_cluster_index stations = [] for i in range(M): stations.append((int(averages_x[i]), int(averages_y[i]))) return stations def solve(N, M, planets): """ K-meansでstationの位置を最適化する 旅行の順番を貪欲法+シミュレーテッドアニーリングで求める """ random.seed(10) # K-meansによるstationの情報の格納 stations = k_means(planets, M) # distance-matrixの計算 energy_cost_matrix = [[float("inf") for _ in range(N + M)] for _ in range((N + M))] for i in range(N + M): for j in range(N + M): if i == j: energy_cost_matrix[i][j] = 0 continue weight = 1 if i < N: x1, y1 = planets[i] weight *= ALPHA else: x1, y1 = stations[i - N] if j < N: x2, y2 = planets[j] weight *= ALPHA else: x2, y2 = stations[j - N] energy_cost_matrix[i][j] = (x1 - x2)**2 + (y1 - y2)**2 energy_cost_matrix[i][j] *= weight # ワーシャルフロイド法で最短距離を求める next_hop_matrix = [[i for _ in range(N + M)] for i in range((N + M))] for k in range(N + M): for i in range(N + M): for j in range(N + M): if energy_cost_matrix[i][j] > energy_cost_matrix[i][k] + energy_cost_matrix[k][j]: energy_cost_matrix[i][j] = energy_cost_matrix[i][k] + energy_cost_matrix[k][j] next_hop_matrix[i][j] = k # 貪欲法で初期解の生成 travel_seq = [0] last_pos = 0 passed = [False] * N passed[0] = True travel_cost = 0 for _ in range(N - 1): base_cost = float("inf") next_pos = -1 for j in range(N): if passed[j]: continue cost = energy_cost_matrix[last_pos][j] new_cost = travel_cost + cost if new_cost < base_cost: base_cost = new_cost next_pos = j travel_cost = base_cost travel_seq.append(next_pos) passed[next_pos] = True last_pos = next_pos cost = energy_cost_matrix[last_pos][0] travel_cost += cost travel_seq.append(0) print(f"init_travel_cost: {travel_cost}", file=sys.stderr, flush=True) # 山登り法で最適解を探す for _ in range(10000): i = random.randint(1, N - 1) j = random.randint(1, N - 1) if i == j: continue if i > j: tmp = i i = j j = tmp new_cost = travel_cost new_cost -= energy_cost_matrix[travel_seq[i - 1]][travel_seq[i]] new_cost -= energy_cost_matrix[travel_seq[j]][travel_seq[j + 1]] new_cost += energy_cost_matrix[travel_seq[i - 1]][travel_seq[j]] new_cost += energy_cost_matrix[travel_seq[i]][travel_seq[j + 1]] if new_cost < travel_cost: travel_cost = new_cost for k in range(i, (i + j + 1) // 2): tmp = travel_seq[k] travel_seq[k] = travel_seq[j + i - k] travel_seq[j + i - k] = tmp print(f"travel_cost: {travel_cost}", file=sys.stderr, flush=True) new_travel_seq = [] new_travel_seq.append((1, travel_seq[0] + 1)) for i in range(len(travel_seq) - 1): i0 = travel_seq[i] j0 = travel_seq[i + 1] cur = j0 path = [] while cur != i0: path.append(cur) cur = next_hop_matrix[i0][cur] path.reverse() for p in path: if p < N: new_travel_seq.append((1, p + 1)) else: new_travel_seq.append((2, p - N + 1)) calc_score(stations, new_travel_seq, planets) return Result(stations, new_travel_seq) def main(): N, M = map(int, input().split()) planets = [] for _ in range(N): a, b = map(int, input().split()) planets.append((a, b)) result = solve(N, M, planets) for i in range(M): print(result.stations[i]) print(len(result.travel_seq)) for i in range(len(result.travel_seq)): print(result.travel_seq[i]) if __name__ == "__main__": main()